Structural and Magnetic Properties of Additively Manufactured Hiperco (FeCo-2V) (open access)

Structural and Magnetic Properties of Additively Manufactured Hiperco (FeCo-2V)

The FeCo-V alloy, commercially referred to as Hiperco, is known for its great soft magnetic properties. However, the high cost of production has limited the usage of this alloy to small-scale applications, where the small volume and high magnetic performance are critical. Additive manufacturing (AM) has the potential to solve the production problems that exist in Hiperco manufacturing. The present research has focused on selective laser melting (SLM) based AM processing of Hiperco. The goal was to perform a detailed examination of SLM processed Hiperco and determine how the process parameters affect the microstructure, mechanical and magnetic properties. While a systematic set of SLM process parameters were employed, the results indicate that the energy density was quite similar for this set of process parameters, resulting in similar properties. Overall, the saturation magnetization (Ms) values were very good, but the coercivity (Hc) values were very high, in the case of all as SLM processed conditions. Additionally, a large variation in porosity was observed in the as SLM processed samples, as a function of process parameters. Interestingly, long-term heat-treatments of these samples in an Ar+H2 atmosphere resulted in substantial decreases in the Hc values. These results are presented and discussed.
Date: December 2021
Creator: O'Donnell, Aidan James
System: The UNT Digital Library
Fractography and Mechanical Properties of Laminated Alumina and Yttria Stabilized Zirconia (open access)

Fractography and Mechanical Properties of Laminated Alumina and Yttria Stabilized Zirconia

Yttria stabilized zirconia (YSZ) is a polymorph with possible phase transformation toughening occurring during impact. The fractography and mechanical properties of laminated alumina and YSZ were studied in this thesis. Five sample types were studied in this thesis: (5:5) Al2O3/YSZ (a sequence of 5 alumina tapes stacked on 5 YSZ tapes), (5:5) Al2O3/YSZ (1 wt.% Pure ZrO2), (7:3) Al2O3/YSZ, Al2O3, and YSZ. Scanning electron microscopy (SEM) and X-ray microscopy (XRM) were used to study morphology and crack propagation with three-point tests performed to study the flexural strength. X-ray diffraction (XRD) spectra of all samples pre and post three-point tests were examined to determine if a change in monoclinic zirconia occurred. The combination of SEM and XRM data found microcracks in the YSZ layers of Al2O3/YSZ laminates with none present on YSZ laminates, leading to the conclusion tensile stress was performed on YSZ during sintering with Al2O3. Fracture patterns show a curving of cracks in Al2O3 layers and abrupt, jagged breaks in YSZ layers with crack forking at major YSZ microcrack regions. YSZ laminates were found to have the highest average flexural strength, but a very high standard deviation and low sample count and Al2O3 laminates having the second highest flexural …
Date: December 2021
Creator: Cotton, Shomari Johnny
System: The UNT Digital Library

First Principles Study of the Effect of Local Bonding on Diffusion Mechanisms in Alloys

This work demonstrates how local, randomized tailoring of bond stiffness can affect the activation energy of diffusion in model alloys using density functional theory-based computations. This work is organized into two parts. The first part deals with the vacancy diffusion mechanism, and it compares the in–plane (IP) vs out-of-plane (OOP) diffusion paths in prototypical binary Mg-X (Ca, Y, and Gd) and ternary Mg-X (Ca, Y, and Gd)-Zn alloys. We examine how vacancy formation, migration, and solute vacancy binding energies in binary Mg-X alloys influence diffusion activation and correlated them with conventional diffusion model based solely on the solute sizes. Next, we explore how Zn addition to binary Mg-X (Ca, Y, and Gd) alloys influences the OOP activation energy barrier is discussed in terms of detailed energetic computations and bond characterization in the present work. Our results indicate that Zn addition further enhances the OOP activation energy barrier compared to corresponding activation energies in Mg binaries. This work concludes that engineering stiffer directional bonds via micro-alloying additions in Mg is a promising route to dramatically improve their high temperature creep response. The second part of my work investigates the effects of Si, P, and S solutes on H interstitial diffusion mechanism …
Date: December 2021
Creator: Paranjape, Priyanvada Madhukar
System: The UNT Digital Library
Thermokinetics-Dependent Microstructural Evolution and Material Response in Laser-Based Additive Manufacturing (open access)

Thermokinetics-Dependent Microstructural Evolution and Material Response in Laser-Based Additive Manufacturing

Laser-based additive manufacturing offers a high degree of thermokinetic flexibility that has implications on the structure and properties of the fabricated component. However, to exploit the flexibility of this process, it is imperative to understand the process-inherent thermokinetic evolution and its effect on the material characteristics. In view of this, the present work establishes a fundamental understanding of the spatiotemporal variation of thermokinetics during the fabrication of the non-ferrous alloys using the laser powder bed fusion process. Due to existing limitations of experimental techniques to probe such thermokinetics, a finite element method-based computational model is developed to predict the thermokinetic variations during the process. With the computational approach coupled with experimental techniques, the current work presents the solidification behavior influenced by spatially varying thermokinetics. In addition, it uniquely predicts the process-inherent multi-track multi-layer evolution of thermal cycles as well as thermal stress cycles and identifies their influence on the post-solidification microstructural evolution involving solid-state phase transformation. Lastly, the response of the material with a unique microstructure is recorded under various conditions (static and dynamic), which is again compared with the same set properties obtained for the same material processed via conventional routes.
Date: December 2021
Creator: Pantawane, Mangesh V
System: The UNT Digital Library
Additive Manufacturing of AZ31B Magnesium Alloy via Friction Stir Deposition (open access)

Additive Manufacturing of AZ31B Magnesium Alloy via Friction Stir Deposition

Additive friction stir deposition (AFSD) of AZ31B magnesium alloy was conducted to examine evolution of grain structure, phases, and crystallographic texture. AFSD was carried out using a hollow tool made from tool steel at a constant rotational velocity of 400 rpm on the AZ31B base plate. Bar stock of AZ31B was utilized as a feed material. The linear velocity of the tool was varied in the range of 4.2-6.3 mm/s. The feed rate of the material had to be maintained at a half value compared to the corresponding linear velocity for the successful deposition. The layer thickness and length of the deposits were kept constant at 1 mm and 50 mm respectively. The tool torque and actuator force values were recorded during the process and for calculation of the average input energy for each processing condition. Temperature during the AFSD experiments was monitored using a type k thermocouple located 4 mm beneath the deposition surface at the center of the deposition track. The average input energy values showed a decreasing trend with increasing tool linear velocity. The temperature values during deposition were ∼0.7 times the liquidus of the alloy. The deposited material then was examined by laser microscope and profilometer, …
Date: December 2021
Creator: Patil, Shreyash Manojkumar
System: The UNT Digital Library

Advanced Cathodes for High Energy Density Lithium Sulfur Battery

A systematic development of 2D alloy catalyst with synergistic performance of high lithium polysulfide (LiPS) binding energy and efficient Li+ ion/electron conduction is presented. The first section of work found that Li+ ions can flow through the percolated ion transport pathway in polycrystalline MoS2, while Na+ and K+ ions can easily flow through the percolated 1D ion channel near the grain boundaries. An unusually high ionic conductivity of extrinsic Li+, Na+, and K+ ions in 2D MoS2 film exceeding 1 S/cm was measured that is more than two orders of magnitude higher than those of conventional solid ionic materials, including 2D ionic materials. The second section of this dissertation focus on catalyzing the transformation of LiPSs to prevent the shuttle effect during the battery cycling by synthesizing 2H (semiconducting) – 1T (metallic) mixed phase 2D Mo0.5W0.5S2 alloy on CNF paper, using two step sputtering and sulfurization method. The lithium sulfur (Li-S) battery cell assembled with the 2D Mo0.5W0.5S2/CNF/S cathode shows a high specific capacity of 1228 mAh g-1 at 0.1C and much higher cyclic stability over 4 times as compared to the pristine cathodes. The high LiPSs binding energy of catalyst efficiently prevents the shuttling effect and corrosion of Li …
Date: December 2021
Creator: Bhoyate, Sanket
System: The UNT Digital Library
Unraveling the Effect of Atomic Configurations and Structural Statistics on Mechanical Behavior of Multicomponent and Amorphous Alloys (open access)

Unraveling the Effect of Atomic Configurations and Structural Statistics on Mechanical Behavior of Multicomponent and Amorphous Alloys

Multicomponent high-entropy and amorphous alloys represent relatively new classes of structural materials with complex atomic configurations and exceptional mechanical properties. However, there are several knowledge gaps in the relationships between their atomic structure and mechanical properties. Understanding these critical relationships will enable novel alloy design and tailoring of their mechanical properties for desired engineering applications. In this dissertation, first-principles calculations and molecular dynamics simulations are applied to investigate the local atomic configurations and ordering in high-entropy and amorphous alloys. Our findings suggest that fluctuations in local atomic configurations for high- entropy alloys result in significant changes in stacking fault energy, twin energy, dislocation behavior, dislocation-twin interactions, and critical shear stress. For amorphous alloys or metallic glasses, the short-range order (SRO) and medium-range order (MRO) were found to play decisive roles in determination of their mechanical properties. Structural relaxation was found to lead to shear localization, which was attributed to free volume change and evolution of SRO and MRO to more brittle nature. In contrast, rejuvenated metallic glasses had relatively large and uniform free volume distribution giving rise to homogeneous flow and increased plasticity.
Date: December 2021
Creator: Yang, Yu Chia
System: The UNT Digital Library