Improving Memory Performance for Both High Performance Computing and Embedded/Edge Computing Systems (open access)

Improving Memory Performance for Both High Performance Computing and Embedded/Edge Computing Systems

CPU-memory bottleneck is a widely recognized problem. It is known that majority of high performance computing (HPC) database systems are configured with large memories and dedicated to process specific workloads like weather prediction, molecular dynamic simulations etc. My research on optimal address mapping improves the memory performance by increasing the channel and bank level parallelism. In an another research direction, I proposed and evaluated adaptive page migration techniques that obviates the need for offline analysis of an application to determine page migration strategies. Furthermore, I explored different migration strategies like reverse migration, sub page migration that I found to be beneficial depending on the application behavior. Ideally, page migration strategies redirect the demand memory traffic to faster memory to improve the memory performance. In my third contribution, I worked and evaluated a memory-side accelerator to assist the main computational core in locating the non-zero elements of a sparse matrix that are typically used in scientific, machine learning workloads on a low-power embedded system configuration. Thus my contributions narrow the speed-gap by improving the latency and/or bandwidth between CPU and memory.
Date: December 2021
Creator: Adavally, Shashank
System: The UNT Digital Library

Online Testing of Context-Aware Android Applications

This dissertation presents novel approaches to test context aware applications that suffer from a cost prohibitive number of context and GUI events and event combinations. The contributions of this work to test context aware applications under test include: (1) a real-world context events dataset from 82 Android users over a 30-day period, (2) applications of Markov models, Closed Sequential Pattern Mining (CloSPAN), Deep Neural Networks- Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU), and Conditional Random Fields (CRF) applied to predict context patterns, (3) data driven test case generation techniques that insert events at the beginning of each test case in a round-robin manner, iterate through multiple context events at the beginning of each test case in a round-robin manner, and interleave real-world context event sequences and GUI events, and (4) systematically interleaving context with a combinatorial-based approach. The results of our empirical studies indicate (1) CRF outperforms other models thereby predicting context events with F1 score of about 60% for our dataset, (2) the ISFreqOne that iterates over context events at the beginning of each test case in a round-robin manner as well as interleaves real-world context event sequences and GUI events at an interval one achieves …
Date: December 2021
Creator: Piparia, Shraddha
System: The UNT Digital Library
Machine-Learning-Enabled Cooperative Perception on Connected Autonomous Vehicles (open access)

Machine-Learning-Enabled Cooperative Perception on Connected Autonomous Vehicles

The main research objective of this dissertation is to understand the sensing and communication challenges to achieving cooperative perception among autonomous vehicles, and then, using the insights gained, guide the design of the suitable format of data to be exchanged, reliable and efficient data fusion algorithms on vehicles. By understanding what and how data are exchanged among autonomous vehicles, from a machine learning perspective, it is possible to realize precise cooperative perception on autonomous vehicles, enabling massive amounts of sensor information to be shared amongst vehicles. I first discuss the trustworthy perception information sharing on connected and autonomous vehicles. Then how to achieve effective cooperative perception on autonomous vehicles via exchanging feature maps among vehicles is discussed in the following. In the last methodology part, I propose a set of mechanisms to improve the solution proposed before, i.e., reducing the amount of data transmitted in the network to achieve an efficient cooperative perception. The effectiveness and efficiency of our mechanism is analyzed and discussed.
Date: December 2021
Creator: Guo, Jingda
System: The UNT Digital Library
SIMON: A Domain-Agnostic Framework for Secure Design and Validation of Cyber Physical Systems (open access)

SIMON: A Domain-Agnostic Framework for Secure Design and Validation of Cyber Physical Systems

Cyber physical systems (CPS) are an integration of computational and physical processes, where the cyber components monitor and control physical processes. Cyber-attacks largely target the cyber components with the intention of disrupting the functionality of the components in the physical domain. This dissertation explores the role of semantic inference in understanding such attacks and building resilient CPS systems. To that end, we present SIMON, an ontological design and verification framework that captures the intricate relationship(s) between cyber and physical components in CPS by leveraging several standard ontologies and extending the NIST CPS framework for the purpose of eliciting trustworthy requirements, assigning responsibilities and roles to CPS functionalities, and validating that the trustworthy requirements are met by the designed system. We demonstrate the capabilities of SIMON using two case studies – a vehicle to infrastructure (V2I) safety application and an additive manufacturing (AM) printer. In addition, we also present a taxonomy to capture threat feeds specific to the AM domain.
Date: December 2021
Creator: Yanambaka Venkata, Rohith
System: The UNT Digital Library

Integrating Multiple Deep Learning Models to Classify Disaster Scene Videos

Recently, disaster scene description and indexing challenges attract the attention of researchers. In this dissertation, we solve a disaster-related multi-labeling task using a newly developed Low Altitude Disaster Imagery dataset. In the first task, we realize video content by selecting a set of summary key frames to represent the video sequence. Through inter-frame differences, the key frames are generated. The key frame extraction of disaster-related video clips is a powerful tool that can efficiently convert video data into image-level data, reduce the requirements for the extraction environment and improve the applicable environment. In the second, we propose a novel application of using deep learning methods on low altitude disaster video feature recognition. Supervised learning-based deep-learning approaches are effective in disaster-related features recognition via foreground object detection and background classification. Performed dataset validation, our model generalized well and improved performance by optimizing the YOLOv3 model and combining it with Resnet50. The comprehensive models showed more efficient and effective than those in prior published works. In the third task, we optimize the whole scene labeling classification by pruning the lightweight model MobileNetV3, which shows superior generalizability and can disaster features recognition from a disaster-related dataset be accomplished efficiently to assist disaster recovery.
Date: December 2021
Creator: Li, Yuan
System: The UNT Digital Library

Reliability Characterization and Performance Analysis of Solid State Drives in Data Centers

NAND flash-based solid state drives (SSDs) have been widely adopted in data centers and high performance computing (HPC) systems due to their better performance compared with hard disk drives. However, little is known about the reliability characteristics of SSDs in production systems. Existing works that study the statistical distributions of SSD failures in the field lack insights into distinct characteristics of SSDs. In this dissertation, I explore the SSD-specific SMART (Self-Monitoring, Analysis, and Reporting Technology) attributes and conduct in-depth analysis of SSD reliability in a production environment with a focus on the unique error types and health dynamics. QLC SSD delivers better performance in a cost-effective way. I study QLC SSDs in terms of their architecture and performance. In addition, I apply thermal stress tests to QLC SSDs and quantify their performance degradation processes. Various types of big data and machine learning workloads have been executed on SSDs under varying temperatures. The SSD throughput and application performance are analyzed and characterized.
Date: December 2021
Creator: Liang, Shuwen (Computer science and engineering researcher)
System: The UNT Digital Library