18 Matching Results

Results open in a new window/tab.

Switchable and Memorable Adhesion of Gold-Coated Microspheres with Electrochemical Modulation

Switchable adhesives using stimuli-responsive systems have many applications, including transfer printing, climbing robots, and gripping in pick and place processes. Among these adhesives, electroadhesive surface can spontaneously adjust their adhesion in response to an external electric field. However, electroadhesives usually need high voltage (e.g. kV) and the adhesion disappears upon turning off the signal. These limitations make them complicated and costly. In this research, we demonstrated a gold-coated silica microsphere (GCSM) with highly switchable and memorable adhesion triggered by a relatively small voltage (<30 V). In the experiment, a silica microsphere with a diameter of 15 μm was glued to a tipless atomic force microscope (AFM) cantilever. The nanoscale thick gold coating was sprayed on the surface of the microsphere by a sputter coater. AFM was used to explore the tunable adhesion with an external voltage at different relative humidity (RH). The results revealed that when applying a positive electrical bias at high RH, the adhesive force increased dramatically while it decreased to almost zero after applying a negative potential. Even if the bias was turned off, the adhesive force state could still be kept and erased on demand by simply applying a negative voltage. The adhesive force can be …
Date: May 2021
Creator: Wang, Jie (Materials scientist)
System: The UNT Digital Library

Self-Healing Ceramics for High Temperature Application

Ceramics have a wide variety of applications due to their unique properties; however, the low fracture toughness leads the formation and propagation of unpredictable cracks, and reduces their reliability. To solve this problem, self-healing adaptive oxides were developed. The aim of the work is to gain new insights into self-healing mechanisms of ceramics and their application. Binary oxide systems were investigated that are at least partially healed through the extrinsic or intrinsic addition of silver or silver oxide to form ternary oxides (e.g., Nb2O5 + Ag → AgNbO3). Sintered pellets and coatings were tested. For self-healing TBCs, model systems that were studied include YSZ-Al2O3-SiC, YSZ-Al2O3-TiC, YSZ-Al2O3-Nb2O5, and YSZ-Al2O3-Ta2O5. Laser cladded samples and sintered pellets were produced to test. The healing process occurs due to the formation of oxidation products and glassy phases depending on the self-healing mechanism. X-ray diffraction was used to explore phase evolution, chemical compositions, and structural properties of these samples. SEM equipped with EDS was used to investigate the chemical and morphological properties for the cross-sectional area. Pin-on-disc test was applied to test tribology performance for Nb2O5-Ag2O system, and infiltration test was applied to test CMAS-resistance for TBCs at elevated temperature. The improvements in the performance of …
Date: August 2021
Creator: Gu, Jingjing
System: The UNT Digital Library

Optical Emission Spectroscopy Monitoring Method for Additively Manufactured Iron-Nickel and Other Complex Alloy Samples

The method of optical emission spectroscopy has been used with Fe-Ni and other complex alloys to investigate in-situ compositional control for additive manufacturing. Although additive manufacturing of metallic alloys is an emerging technology, compositional control will be a challenge that needs to be addressed for a multitude of industries going forward for next-gen applications. This current scope of work includes analysis of ionized species generated from laser and metal powder interaction that is inherent to the laser engineered net shaping (LENS) process of additive manufacturing. By quantifying the amount of a given element's presence in the electromagnetic (EM) spectrum, this amount can be compared to the actual amount present in the sample via post-processing and elemental dispersive x-ray (EDX) data analysis. For this work a commercially available linear silicon CCD camera captured metallic ion peaks found within the ultraviolet (UV) region to avoid background contamination from blackbody radiation. Although the additive manufacturing environment can prove difficult to measure in-situ due to time dependent phenomena, extreme temperatures, and defect generation, OEM was able to capture multiple data points over a time series that showed a positive correlation between an element's peak intensity and the amount of that element found in the …
Date: May 2021
Creator: Flannery, David A. (David Andrew)
System: The UNT Digital Library

Defect-Engineered Two-Dimensional Transition Metal Dichalcogenides for High-Efficient Piezoelectric Sensor

Piezoelectricity in two-dimensional (2D) transition metal dichalcogenides (TMDs) has attracted significant attention due to their unique crystal structure and the lack of inversion centers when the bulk TMDs thin down to monolayer. Although the piezoelectricity effect in atomic-thickness TMDs has been demonstrated, they are not scalable. Herein, we demonstrate a piezoelectric effect from large-scale, sputtered MoS2 and WS2 using a robust defect-engineering based on the thermal-solvent annealing and solvent immersion process. This yields a higher piezoelectric output over 20 times after annealing or solvent immersion. Indeed, the piezoelectric responses are strengthened with the increases of defect density. Moreover, the MoS2 or WS2 piezoelectric device array shows an exceptional piezoelectric sensitivity with a high-level uniformity and excellent environmental stability under ambient conditions. A detailed study of the sulfur vacancy-dependent property and its resultant asymmetric structure-induced piezoelectricity is reported. The proposed approach is scalable and can produce advanced materials for flexible piezoelectric devices to be used in emerging bioinspired robotics and biomedical applications.
Date: May 2021
Creator: Kim, Junyoung
System: The UNT Digital Library
Engineering the Uniform Lying Helical Structure in Chiral Nematic Liquid Crystal Phase: From Morphology Transition to Dimension Control (open access)

Engineering the Uniform Lying Helical Structure in Chiral Nematic Liquid Crystal Phase: From Morphology Transition to Dimension Control

Chiral nematic liquid crystals or cholesteric liquid crystals (CLC) can be obtained by adding a chiral dopant into a nematic liquid crystal. Liquid crystal molecules spontaneously rotate along a long axis to form helical structures in CLC system. Both pitch size and orientation of the helical structure is determined by the boundary conditions and can be further tuned by external stimuli. Particularly, the uniform lying helical structure of CLC has attracted intensive attention due to its beam steering and diffraction abilities. Up to now, studies have worked on controlling the in-plane orientation of lying helix through surface rubbing and external stimuli. However, it remains challenging to achieve steady and uniform lying helical structure due to its higher energy, comparing with other helical configurations. Here, by varying the surface anchoring, uniform lying helical structure with long-range order is achieved as thermodynamically stable state without external support. Poly (6-(4-methoxy-azobenzene-4'-oxy) hexyl methacrylate) (PMMAZO), a liquid crystalline polymer, is deposited onto the silicon substrate to fine-tune the surface anchoring. By changing the grafting density of PMMAZO, both pitch size and orientation of lying helical structure are precisely controlled. As the grafting density increases, the enhanced titled deformation of helical structure suppresses the pitch size …
Date: May 2021
Creator: Jia, Zhixuan
System: The UNT Digital Library

Origin of Unusually Large Hall-Petch Strengthening Coefficients in High Entropy Alloys

High entropy alloys (HEAs), also referred to as complex concentrated alloys (CCAs), are a relatively new class of alloys that have gained significant attention since 2010 due to their unique balance of properties that include high strength, ductility and excellent corrosion resistance. HEAs are usually based on five or more elements alloyed in near equimolar concentrations, and exhibit simple microstructures by the formation of solid solution phases instead of complex compounds. HEAs have great potential in the design of new materials; for instance, for lightweight structural applications and elevated temperature applications. The relation between grain size and yield strength has been a topic of significant interest not only to researchers but also for industrial applications. Though some research papers have been published in this area, consensus among them is lacking, as the studies yielded different results. Al atom being a large atom causes significant lattice distortion. This work attempts to study the Hall-Petch relationship for Al0.3CoFeNi and Al0.3CoCrFeNi and to compare the data of friction stress σ0 and Hall-Petch coefficient K with published data. The base alloys for both these alloys are CoFeNi and CoCrFeNi respectively. It was observed by atom probe tomography (APT) that clustering of Al-Ni atoms in …
Date: May 2021
Creator: Jagetia, Abhinav
System: The UNT Digital Library

High Strain Rate Deformation Behavior of Single-Phase and Multi-Phase High Entropy Alloys

Fundamental understanding of high strain rate deformation behavior of materials is critical in designing new alloys for wide-ranging applications including military, automobile, spacecraft, and industrial applications. High entropy alloys, consisting of multiple elements in (near) equimolar proportions, represent a new paradigm in structural alloy design providing ample opportunity for achieving excellent performance in high strain rate applications by proper selection of constituent elements and/or thermomechanical processing. This dissertation is focused on fundamental understanding of high strain-rate deformation behavior of several high entropy alloy systems with widely varying microstructures. Ballistic impact testing of face centered cubic Al0.1CoCrFeNi high entropy alloy showed failure by ductile hole growth. The deformed microstructure showed extensive micro-banding and micro-twinning at low velocities while adiabatic shear bands and dynamic recrystallization were seen at higher velocities. The Al0.7CoCrFeNi and AlCoCrFeNi2.1 eutectic high entropy alloys, with BCC and FCC phases in lamellar morphology, showed failure by discing. A network of cracks coupled with small and inhomogeneous plastic deformation led to the brittle mode of failure in these eutectic alloys. Phase-specific mechanical behavior using small-scale techniques revealed higher strength and strain rate sensitivity for the B2 phase compared to the L12 phase. The interphase boundary demonstrated good stability without any …
Date: May 2021
Creator: Muskeri, Saideep
System: The UNT Digital Library
Structural and Magnetic Properties of Additively Manufactured Hiperco (FeCo-2V) (open access)

Structural and Magnetic Properties of Additively Manufactured Hiperco (FeCo-2V)

The FeCo-V alloy, commercially referred to as Hiperco, is known for its great soft magnetic properties. However, the high cost of production has limited the usage of this alloy to small-scale applications, where the small volume and high magnetic performance are critical. Additive manufacturing (AM) has the potential to solve the production problems that exist in Hiperco manufacturing. The present research has focused on selective laser melting (SLM) based AM processing of Hiperco. The goal was to perform a detailed examination of SLM processed Hiperco and determine how the process parameters affect the microstructure, mechanical and magnetic properties. While a systematic set of SLM process parameters were employed, the results indicate that the energy density was quite similar for this set of process parameters, resulting in similar properties. Overall, the saturation magnetization (Ms) values were very good, but the coercivity (Hc) values were very high, in the case of all as SLM processed conditions. Additionally, a large variation in porosity was observed in the as SLM processed samples, as a function of process parameters. Interestingly, long-term heat-treatments of these samples in an Ar+H2 atmosphere resulted in substantial decreases in the Hc values. These results are presented and discussed.
Date: December 2021
Creator: O'Donnell, Aidan James
System: The UNT Digital Library
Fractography and Mechanical Properties of Laminated Alumina and Yttria Stabilized Zirconia (open access)

Fractography and Mechanical Properties of Laminated Alumina and Yttria Stabilized Zirconia

Yttria stabilized zirconia (YSZ) is a polymorph with possible phase transformation toughening occurring during impact. The fractography and mechanical properties of laminated alumina and YSZ were studied in this thesis. Five sample types were studied in this thesis: (5:5) Al2O3/YSZ (a sequence of 5 alumina tapes stacked on 5 YSZ tapes), (5:5) Al2O3/YSZ (1 wt.% Pure ZrO2), (7:3) Al2O3/YSZ, Al2O3, and YSZ. Scanning electron microscopy (SEM) and X-ray microscopy (XRM) were used to study morphology and crack propagation with three-point tests performed to study the flexural strength. X-ray diffraction (XRD) spectra of all samples pre and post three-point tests were examined to determine if a change in monoclinic zirconia occurred. The combination of SEM and XRM data found microcracks in the YSZ layers of Al2O3/YSZ laminates with none present on YSZ laminates, leading to the conclusion tensile stress was performed on YSZ during sintering with Al2O3. Fracture patterns show a curving of cracks in Al2O3 layers and abrupt, jagged breaks in YSZ layers with crack forking at major YSZ microcrack regions. YSZ laminates were found to have the highest average flexural strength, but a very high standard deviation and low sample count and Al2O3 laminates having the second highest flexural …
Date: December 2021
Creator: Cotton, Shomari Johnny
System: The UNT Digital Library

First Principles Study of the Effect of Local Bonding on Diffusion Mechanisms in Alloys

This work demonstrates how local, randomized tailoring of bond stiffness can affect the activation energy of diffusion in model alloys using density functional theory-based computations. This work is organized into two parts. The first part deals with the vacancy diffusion mechanism, and it compares the in–plane (IP) vs out-of-plane (OOP) diffusion paths in prototypical binary Mg-X (Ca, Y, and Gd) and ternary Mg-X (Ca, Y, and Gd)-Zn alloys. We examine how vacancy formation, migration, and solute vacancy binding energies in binary Mg-X alloys influence diffusion activation and correlated them with conventional diffusion model based solely on the solute sizes. Next, we explore how Zn addition to binary Mg-X (Ca, Y, and Gd) alloys influences the OOP activation energy barrier is discussed in terms of detailed energetic computations and bond characterization in the present work. Our results indicate that Zn addition further enhances the OOP activation energy barrier compared to corresponding activation energies in Mg binaries. This work concludes that engineering stiffer directional bonds via micro-alloying additions in Mg is a promising route to dramatically improve their high temperature creep response. The second part of my work investigates the effects of Si, P, and S solutes on H interstitial diffusion mechanism …
Date: December 2021
Creator: Paranjape, Priyanvada Madhukar
System: The UNT Digital Library
Unraveling the Effect of Atomic Configurations and Structural Statistics on Mechanical Behavior of Multicomponent and Amorphous Alloys (open access)

Unraveling the Effect of Atomic Configurations and Structural Statistics on Mechanical Behavior of Multicomponent and Amorphous Alloys

Multicomponent high-entropy and amorphous alloys represent relatively new classes of structural materials with complex atomic configurations and exceptional mechanical properties. However, there are several knowledge gaps in the relationships between their atomic structure and mechanical properties. Understanding these critical relationships will enable novel alloy design and tailoring of their mechanical properties for desired engineering applications. In this dissertation, first-principles calculations and molecular dynamics simulations are applied to investigate the local atomic configurations and ordering in high-entropy and amorphous alloys. Our findings suggest that fluctuations in local atomic configurations for high- entropy alloys result in significant changes in stacking fault energy, twin energy, dislocation behavior, dislocation-twin interactions, and critical shear stress. For amorphous alloys or metallic glasses, the short-range order (SRO) and medium-range order (MRO) were found to play decisive roles in determination of their mechanical properties. Structural relaxation was found to lead to shear localization, which was attributed to free volume change and evolution of SRO and MRO to more brittle nature. In contrast, rejuvenated metallic glasses had relatively large and uniform free volume distribution giving rise to homogeneous flow and increased plasticity.
Date: December 2021
Creator: Yang, Yu Chia
System: The UNT Digital Library
Thermokinetics-Dependent Microstructural Evolution and Material Response in Laser-Based Additive Manufacturing (open access)

Thermokinetics-Dependent Microstructural Evolution and Material Response in Laser-Based Additive Manufacturing

Laser-based additive manufacturing offers a high degree of thermokinetic flexibility that has implications on the structure and properties of the fabricated component. However, to exploit the flexibility of this process, it is imperative to understand the process-inherent thermokinetic evolution and its effect on the material characteristics. In view of this, the present work establishes a fundamental understanding of the spatiotemporal variation of thermokinetics during the fabrication of the non-ferrous alloys using the laser powder bed fusion process. Due to existing limitations of experimental techniques to probe such thermokinetics, a finite element method-based computational model is developed to predict the thermokinetic variations during the process. With the computational approach coupled with experimental techniques, the current work presents the solidification behavior influenced by spatially varying thermokinetics. In addition, it uniquely predicts the process-inherent multi-track multi-layer evolution of thermal cycles as well as thermal stress cycles and identifies their influence on the post-solidification microstructural evolution involving solid-state phase transformation. Lastly, the response of the material with a unique microstructure is recorded under various conditions (static and dynamic), which is again compared with the same set properties obtained for the same material processed via conventional routes.
Date: December 2021
Creator: Pantawane, Mangesh V
System: The UNT Digital Library
Additive Manufacturing of AZ31B Magnesium Alloy via Friction Stir Deposition (open access)

Additive Manufacturing of AZ31B Magnesium Alloy via Friction Stir Deposition

Additive friction stir deposition (AFSD) of AZ31B magnesium alloy was conducted to examine evolution of grain structure, phases, and crystallographic texture. AFSD was carried out using a hollow tool made from tool steel at a constant rotational velocity of 400 rpm on the AZ31B base plate. Bar stock of AZ31B was utilized as a feed material. The linear velocity of the tool was varied in the range of 4.2-6.3 mm/s. The feed rate of the material had to be maintained at a half value compared to the corresponding linear velocity for the successful deposition. The layer thickness and length of the deposits were kept constant at 1 mm and 50 mm respectively. The tool torque and actuator force values were recorded during the process and for calculation of the average input energy for each processing condition. Temperature during the AFSD experiments was monitored using a type k thermocouple located 4 mm beneath the deposition surface at the center of the deposition track. The average input energy values showed a decreasing trend with increasing tool linear velocity. The temperature values during deposition were ∼0.7 times the liquidus of the alloy. The deposited material then was examined by laser microscope and profilometer, …
Date: December 2021
Creator: Patil, Shreyash Manojkumar
System: The UNT Digital Library

Effects of Surface Texture and Porosity on the Corrosion Behavior and Biocompatibility of Pure Zinc Biomaterials for Orthopedic Applications

In this dissertation, small and large NaCl particle-derived surfaces (Ra > 40 microns) were generated on 2D Zn materials, and the surfaces were carefully studied concerning topography, corrosion behavior, and bone cell compatibility. Increases in surface roughness accelerated the corrosion rate, and cell viability was maintained. This method was then extended to 3D porous scaffolds prepared by a hybrid AM/casting technique. The scaffolds displayed a near-net shape, an interconnected pore structure, increasing porosity paralleled to an increased corrosion rate, an ability to support cell growth, and powerful antibacterial properties. Lastly, nano/micro (Rz 0.02–1 microns) topographies were generated on 2D Zn materials, and the materials were comprehensively studied with special attention devoted to corrosion behavior, biocompatibility, osteogenic differentiation, immune cell response, hemocompatibility, and antibacterial performance. For the first time, the textured nonhemolytic surfaces on Zn were shown to direct cell fate, and the micro-textures promoted bone cell differentiation and directed immune cells away from an inflammatory phenotype.
Date: May 2021
Creator: Cockerill, Irsalan
System: The UNT Digital Library

Investigation of Porous Ceramic Structure by Freeze-Casting

The design and fabrication of porous ceramic materials with anisotropic properties has, in recent years, gained popularity due to their potential application in various areas that include medical, energy, defense, space, and aerospace. Freeze-casting is an effective, low-cost, and safe method as a wet shaping technique to create these structures. To control the morphology of these materials, many critical factors were found to play an important role. In this dissertation, the processing parameters of the magnetic field-assisted freeze-casting method were optimized with a focus on comparing the structure obtained using vertical and horizontal magnetic fields and understanding the mechanisms that occur under different freezing modes. More specifically, this processing method was used to produce Al2O3 and B4C porous ceramics materials with unidirectionally-aligned pore channels. The effect of the vertical and horizontal magnetic field strength and direction, concentration of magnetic material (Fe3O4), cooling rate, and freezing time were examined. The resulting ceramics with highly aligned pore channels were infiltrated with molten metal to create metal matrix composites. The mechanical properties of these structures were measured and were subsequently correlated to their morphology and composition.
Date: May 2021
Creator: Bakkar, Said Adnan
System: The UNT Digital Library

Alloy Design, Processing and Deformation Behavior of Metastable High Entropy Alloys

This dissertation presents an assortment of research aimed at understanding the composition-dependence of deformation behavior and the response to thermomechanical processing, to enable efficient design and processing of low stacking fault energy (SFE) high entropy alloy (HEAs). The deformation behavior and SFE of four low SFE HEAs were predicted and experimentally verified using electron microscopy and in-situ neutron diffraction. A new approach of employing a minimization function to refine and improve the accuracy of a semi-empirically derived expression relating composition with SFE is demonstrated. Ultimately, by employing the minimization function, the average difference between experimental and predicted SFE was found to be 2.64 mJ m-2. Benchmarking with currently available approaches suggests that integrating minimization functions can substantially improve prediction accuracy and promote efficient HEA design with expansion of databases. Additionally, in-situ neutron diffraction was used to present the first in-situ measurement of the interspacing between stacking faults (SFs) which were correlated with work hardening behavior. Electron transparent specimens (< ~100 nm thick) were used in order to resolve nanoscale planar faults instead of the thicker sub-sized specimens (on the order of millimeters in thickness) which exhibit the classical stages III work hardening behavior characteristic of low SFE metals and alloys. …
Date: May 2021
Creator: Frank, Michael (Materials science researcher)
System: The UNT Digital Library

Synergistic Effects of Lattice Instability and Chemical Ordering on FCC Based Complex Concentrated Alloys

The current work investigates how the interactions among constituent elements in high entropy alloys or complex concentrated alloys (HEA/CCAs) can lead to lattice instability and local chemical ordering which in turn affects the microstructure and properties of these alloys. Using binary enthalpies of mixing, the degree of ordering in concentrated multi-component solid solutions was successfully tailored by introducing Cr, Al and Ti in a CoFeNi HEA/CCA. CoFeNi was selected as the base alloy to achieve a close to random solid solution as indicated by the near-zero binary enthalpies in CoFeNi alloy system. The room temperature tensile properties of these alloys with varied degree of ordering follow a consistent trend where yield stress increased with degree of ordering. This novel approach provides a new alloy design strategy to obtain controlled ordering tendencies and consequently targeted mechanical properties. Further studies on specific alloys have been conducted to utilize this ordering tendency in attaining precipitation strengthening. For this purpose, Al, Ti and Ni were selected to promote ordering and Co, Fe, and Cr were chosen to strengthen the solid solution matrix. In Al0.25CoFeNi HEA/CCA, the ordering tendency between Al and Ni results in a competition between two long-range ordered phases, L12 and B2. …
Date: August 2021
Creator: Dasari, Sriswaroop
System: The UNT Digital Library

Advanced Cathodes for High Energy Density Lithium Sulfur Battery

A systematic development of 2D alloy catalyst with synergistic performance of high lithium polysulfide (LiPS) binding energy and efficient Li+ ion/electron conduction is presented. The first section of work found that Li+ ions can flow through the percolated ion transport pathway in polycrystalline MoS2, while Na+ and K+ ions can easily flow through the percolated 1D ion channel near the grain boundaries. An unusually high ionic conductivity of extrinsic Li+, Na+, and K+ ions in 2D MoS2 film exceeding 1 S/cm was measured that is more than two orders of magnitude higher than those of conventional solid ionic materials, including 2D ionic materials. The second section of this dissertation focus on catalyzing the transformation of LiPSs to prevent the shuttle effect during the battery cycling by synthesizing 2H (semiconducting) – 1T (metallic) mixed phase 2D Mo0.5W0.5S2 alloy on CNF paper, using two step sputtering and sulfurization method. The lithium sulfur (Li-S) battery cell assembled with the 2D Mo0.5W0.5S2/CNF/S cathode shows a high specific capacity of 1228 mAh g-1 at 0.1C and much higher cyclic stability over 4 times as compared to the pristine cathodes. The high LiPSs binding energy of catalyst efficiently prevents the shuttling effect and corrosion of Li …
Date: December 2021
Creator: Bhoyate, Sanket
System: The UNT Digital Library