Effects of Attachment Height and Rail Material of Resistance Training Sled on Trunk Lean and Jerk During Linear Acceleration Training (open access)

Effects of Attachment Height and Rail Material of Resistance Training Sled on Trunk Lean and Jerk During Linear Acceleration Training

Sprint acceleration training has been highly researched and found that resistance sleds are one of the most effective tools for maximizing training adaptations. The resistance sled is being used by many of the world leaders in athletic training but has yet to be researched for the kinetic and kinematic effects some of its key components cause. The aim of this study was to better understand the effects of the attachment height on the sled and sled rail material on the user's trunk lean and jerking effect caused by the sled. This was done because it was hypothesized that the attachment height has a direct impact on trunk lean and sled rail material has a direct impact on jerk caused by the sled. To test these assumptions, experimental and theoretical data was collected using a single subject study analyzing trunk lean and acceleration values of the sled. The results presented a significant decrease in trunk lean (more horizontal line of action) when the attachment height was raised. Additionally, no significant values were attained to support the assumption that by modifying the sled rail material, jerking effects will decrease. The results indicate that there is a direct correlation between attachment height and …
Date: May 2021
Creator: Fitzgerald, Sean
System: The UNT Digital Library
Parkinson's Disease and UPDRS-III Prediction Using Quiet Standing Data and Applied Machine Learning (open access)

Parkinson's Disease and UPDRS-III Prediction Using Quiet Standing Data and Applied Machine Learning

Parkinson's disease (PD) is a neurodegenerative disease that affects motor abilities with increasing severity as the disease progresses. Traditional methods for diagnosing PD require specialists scoring qualitative symptoms using the motor subscale of the Unified Parkinson's Disease Rating Scale (UPDRS-III). Using force-plate data during quiet standing (QS), this study uses machine learning to target the characterization and prediction of PD and UPDRS-III. The purpose of predicting different subscores of the UPDRS-III is to give specialists more tools to help make an informed diagnosis and prognosis. The classification models employed classified PD with a sensitivity of 87.5% and specificity of 83.1%. Stepwise forward regression indicated that features correlated with base of support were most useful in the prediction of head rigidity (r-square = .753). Although there is limited data, this thesis can be used as an exploratory study that evaluates the predictability of UPDRS-III subscores using QS data. Similar prediction models can be implemented to a home setting using low-cost force plates as a novel telemedicine technique to track disease progression.
Date: May 2021
Creator: Exley, Trevor Wayne
System: The UNT Digital Library
Viability Study of Nylon-12 Carbon Fiber Filaments for Use in the Construction of a Powered Lower Body Exoskeleton via Fused Deposition Modeling by Means of Computer Simulation (open access)

Viability Study of Nylon-12 Carbon Fiber Filaments for Use in the Construction of a Powered Lower Body Exoskeleton via Fused Deposition Modeling by Means of Computer Simulation

Members of the elderly population is disproportionately prone to experiencing mobility impairment due to their aging bodies and as a result have frail bodies that are at a higher risk of grave injury due to falling. In order to combat this assistive mobility devices such as exoskeletons have been developed to help patients enhance their range of motion. With additive manufacturing techniques, such as fused deposition modeling (FDM), becoming a more mainstream form of design, the inclusion of lightweight polymers such as nylon 12 as primary construction materials for these devices has increased. In this thesis computer aided design (CAD) software was used to design a prototype lower body exoskeleton and simulation software was used to give the device the characteristics of Stratasys' nylon 12 carbon fiber FDM material to verify it if could be used as the primary construction material for this device when extruded from a FDM printer on either the XZ or ZX printing plane. From the simulations it was found that the material printed along the XZ plane could create a device that could withstand the weight of an average elderly male patient (200 lbs.) as well as the 35 lbs. of force applied to the …
Date: May 2021
Creator: Joiner, Michael Andrew Lown
System: The UNT Digital Library
Bio-Inspired Designs to Reduce Human-Exoskeleton Interaction to Prevent Falls in an Aging Population (open access)

Bio-Inspired Designs to Reduce Human-Exoskeleton Interaction to Prevent Falls in an Aging Population

As a large generation ages, the collective financial and ethical responsibility to prevent egregious bodily harm through fall prevention and gait assistant exoskeleton devices increases. Risk for falls increases with age and the severity of the fall does as well. To support this elderly population, motorized exoskeletons can both increase stability as well as respond faster to fall scenarios, but current models do not more around the existing biological framework. Giving participants a range of motion in key pelvic areas can closely approximate synchronous rotation around the femoral head, while limiting an increase in their sagittal profile. Utilizing 3D printed components while incorporating existing orthic methods provide short production times on modular designs. Although primarily mechanically based, these designs consider electronic requirements and are capable for supporting movement for a 200 lbs. user at a brisk walking pace for 1 hour.
Date: August 2021
Creator: Gates, Edward Sean
System: The UNT Digital Library
In Vitro Electrochemical Evaluation of Bioelectronic Arrays (open access)

In Vitro Electrochemical Evaluation of Bioelectronic Arrays

In this paper, I sought to identify and develop a protocol on electrode arrays as a result of rapid aging by applying rapid current over time. We, however, apply a different approach by using phosphate buffer solution (PBS) to mimic the conditions of the body. Here we have established an in vitro protocol for accelerated aging, a process that involves testing in extreme conditions such as oxygen, heat, sunlight, humidity, and vibration aimed at speeding the normal aging process of items; on commercially available shape memory polymer electrode arrays from Qualia over a period of 30 days in PBS. Two electrode arrays were placed in 37°C and 2 were placed in 57°C. Open lead electrochemical impedance spectroscopy (EIS) was conducted on the electrode arrays. Overall, the results showed there were differences in average impedance during this accelerated aging protocol. At 37°C we see that the average impedance values increased as the electrodes were aged at 1kHz from an average of 4.15E6 to 9.14E6 Ohms. At 57°C electrode arrays 4 and 5 showed strong P values well above 0.05, but average impedance increased drastically from 3.27E6 to 9.97E6 and P value of 0.04 from measurement day 24 to day 30. This …
Date: December 2021
Creator: Singh, Sukhpreet
System: The UNT Digital Library