3,846 Matching Results

Results open in a new window/tab.

Generating pathogen- / pest-resistant non-GMO cotton through targeted genome editing of oxylipin signaling pathways (open access)

Generating pathogen- / pest-resistant non-GMO cotton through targeted genome editing of oxylipin signaling pathways

Data management plan for the research grant "Generating pathogen- / pest-resistant non-GMO cotton through targeted genome editing of oxylipin signaling pathways."
Date: 2021-01-15/2024-01-14
Creator: Ayre, Brian G.; McGarry, Roisin C. & Shah, Jyoti
Object Type: Text
System: The UNT Digital Library
NSFDEB-NERC: Collaborative Research: Wildlife corridors: do they work and who benefits? (open access)

NSFDEB-NERC: Collaborative Research: Wildlife corridors: do they work and who benefits?

Data management plan for the grant, "NSFDEB-NERC: Collaborative Research: Wildlife corridors: do they work and who benefits?" Research on the impact of wildlife corridors using genetics as the measure of effectiveness. The study will use 20 independent landscapes to quantify how corridor traits affect gene flow, and will use non-flying mammals as focal species because they are strongly affected by fragmentation. The research team hypothesizes (1) a strong non-linear decline in success (gene flow) with corridor length, reflecting the skewed distribution of dispersal distances within species; (2) success will drop steeply as corridor width falls below a threshold, with the threshold determined by species traits; and (3) species that are bigger, are habitat specialists, or have greater dispersal abilities (relative to brain size or reproductive rate) will benefit more from corridors. Testing these hypotheses will allow generalization to a wide range of mammal species not included in this project. It will use highly flexible Random Forest models to answer the overarching question: What landscape traits (e.g., corridor width, degree of human disturbance) and species traits (mobility, affinity to particular land cover types) are associated with effective corridors?
Date: 2021-01-15/2023-12-31
Creator: Gregory, Andrew
Object Type: Text
System: The UNT Digital Library
[Oral history interview with Michael Cline] captions transcript

[Oral history interview with Michael Cline]

An oral history with actor and playwright Michael Turner Cline who was an eyewitness to the 1979 Village Station raid in Dallas. Other topics discussed include Cline's upbringing in Highland Park, his family members, and his entertainment career in New York City and Los Angeles. Dr. Wesley Phelps provides background information on anti-gay discrimination in Dallas and Fort Worth. The interview was recorded with Zoom teleconferencing software.
Date: January 8, 2021
Creator: Gieringer, Morgan Davis; Cline, Michael & Phelps, Wesley
Object Type: Video
System: The UNT Digital Library
CAREER: Reinventing Network-on-Chips of GPU-Accelerated Systems (open access)

CAREER: Reinventing Network-on-Chips of GPU-Accelerated Systems

Data management plan for the grant, "CAREER: Reinventing Network-on-Chips of GPU-Accelerated Systems." Research seeking to reinvent on-chip networks for GPU-accelerated systems to remove a communication bottleneck. A major outcome of the project is a set of techniques that enable the development of effective and efficient network-on-chip architectures. Graphics processing units (GPUs) have rapidly evolved to become high-performance accelerators for data-parallel computing. To fully take advantage of the computing power of GPUs, on-chip networks need to provide timely data movement to satisfy the requests of data by the processing cores. Currently, there exists a big gap between the fast-growing processing power of the GPU processing cores and the slow-increasing on-chip network bandwidth. Because of this, GPU-accelerated systems are interconnect-dominated and the on-chip network becomes their performance bottleneck.
Date: 2021-06-01/2026-05-31
Creator: Zhao, Hui
Object Type: Text
System: The UNT Digital Library
CAREER: Fundamental Limits of Cryptographic Primitives Through Network Information Theory (open access)

CAREER: Fundamental Limits of Cryptographic Primitives Through Network Information Theory

Data management plan for the grant, "CAREER: Fundamental Limits of Cryptographic Primitives Through Network Information Theory." Research project studying the fundamental limits of a diverse array of cryptographic primitives through network information theory and coding tools. The project takes an information theoretic view of the investigation of the fundamental limits of cryptographic primitives. The project is expected to unveil theoretical and practical insights into cryptographic primitives, and enhance the understanding on their fundamental limits.
Date: 2021-07-01/2026-06-30
Creator: Sun, Hua
Object Type: Text
System: The UNT Digital Library
CAREER: Manufacturing of Mechanically Stable Nanoporous Ceramic Structures Via Selective Infiltration of Polymer Templates (open access)

CAREER: Manufacturing of Mechanically Stable Nanoporous Ceramic Structures Via Selective Infiltration of Polymer Templates

Data management plan for the grant, "CAREER: Manufacturing of Mechanically Stable Nanoporous Ceramic Structures Via Selective Infiltration of Polymer Templates." This Faculty Early Career Development (CAREER) grant from the National Science Foundation supports fundamental research to elucidate a new strategy of manufacturing nanoporous ceramic structures with controllable structure and composition and programmable mechanical stability. The specific goal of this research is to discover processing-structure-property relationships in ceramic coatings and heterostructures by providing fundamental insights on the mechanism of liquid phase swelling-based infiltration of spin-coated polymer templates with inorganic precursors and defining the rules that control the resulting structure and, thus, access to various materials surfaces and interfaces.
Date: 2021-03-01/2026-02-28
Creator: Berman, Diana
Object Type: Text
System: The UNT Digital Library