Design Principles for Metal-Coordinated Frameworks as Electrocatalysts for Energy Storage and Conversion (open access)

Design Principles for Metal-Coordinated Frameworks as Electrocatalysts for Energy Storage and Conversion

In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of metal coordinated frameworks for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Gibb's free energy, overpotential, charge transfer and ligands effect are evaluated. The charge transfer analysis shows the positive charges on the metal coordinated frameworks play an essential role in improving the electrochemical properties of the metal coordinated frameworks. Based on the calculations, design principles are introduced to rationally design and predict the electrochemical properties of metal coordinated frameworks as efficient catalysts for ORR and OER. An intrinsic descriptor is discovered for the first time, which can be used as a materials parameter for rational design of the metal coordinated frameworks for energy storage and conversion. The success of the design principles provides a better understanding of the mechanism behind ORR and OER and a screening approach for the best catalyst for energy storage and conversion.
Date: December 2018
Creator: Lin, Chun-Yu
System: The UNT Digital Library
High Temperature Water as an Etch and Clean for SiO2 and Si3N4 (open access)

High Temperature Water as an Etch and Clean for SiO2 and Si3N4

An environmentally friendly, and contamination free process for etching and cleaning semiconductors is critical to future of the IC industry. Under the right conditions, water has the ability to meet these requirements. Water becomes more reactive as a function of temperature in part because the number of hydronium and hydroxyl ions increase. As water approaches its boiling point, the concentration of these species increases over seven times their concentrations at room temperature. At 150 °C, when the liquid state is maintained, these concentrations increase 15 times over room temperature. Due to its enhanced reactivity, high temperature water (HTW) has been studied as an etch and clean of thermally grown SiO2, Si3N4, and low-k films. High temperature deuterium oxide (HT-D2O) behaves similarly to HTW; however, it dissociates an order of magnitude less than HTW resulting in an equivalent reduction in reactive species. This allowed for the effects of reactive specie concentration on etch rate to be studied, providing valuable insight into how HTW compares to other high temperature wet etching processes such as hot phosphoric acid (HPA). Characterization was conducted using Fourier transform infrared spectroscopy (FTIR) to determine chemical changes due to etching, spectroscopic ellipsometry to determine film thickness, profilometry to …
Date: December 2018
Creator: Barclay, Joshua David
System: The UNT Digital Library
Mechanisms of Formation and Effects of Transition Metal Oxides in Silicon Nitride on Steel Dry Sliding Contacts (open access)

Mechanisms of Formation and Effects of Transition Metal Oxides in Silicon Nitride on Steel Dry Sliding Contacts

Silicon nitride on steel sliding contacts may provide advantageous tribological properties over traditional self-mated pairs, however the friction and wear behavior at high sliding speeds (>1 m/s) is not well understood. Previous studies at low sliding speeds (< 1 m/s) have found that the wear mechanisms change as a function of the operating parameters, e.g. atmosphere, sliding speed, load, and temperature, due to the formation of transition metal oxides such as Fe2O3 and Fe3O4. This study detected transient effects of the dry silicon nitride on steel contact over a range of sliding speeds to understand their relation to tribochemical reactions and the resulting tribological behavior. Two sets of dry silicon nitride on steel experiments were conducted at 1.45 GPa maximum Hertzian pressure. The first set were low sliding speed reciprocating experiments, conducted at an average of 0.06 m/s, conducted at variable operating temperature, ranging from 23 °C to 1000 °C. In the low sliding speed experiments, transitions of the wear mechanism from adhesive wear, to abrasive wear, then to oxidative wear was observed when the operating temperature increased. The second set were high sliding speed experiments, conducted at variable sliding speeds, ranging from 1 m/s to 16 m/s. In the …
Date: December 2018
Creator: Harris, Michael D.
System: The UNT Digital Library
Molecular Dynamics Simulations of the Structures and Properties of Aluminosilicate and Borosilicate Glasses (open access)

Molecular Dynamics Simulations of the Structures and Properties of Aluminosilicate and Borosilicate Glasses

Silicate glasses are the most common glass types and have impact on almost every aspect in our lives: from window, containers, to glass fibers for telecommunications. Unlike their crystalline counterparts, glass materials lack long-range order in their atomic arrangement but their structures do possess short and medium range characteristics that play critical roles in their physical and chemical properties. Despite active development of characterization techniques that have contributed to the understanding of glass structures, there remain key challenges in obtaining essential structural features of glasses. Atomistic computer simulations have become an increasingly important method in elucidating the atomic structures and in interpretation and/or prediction of composition-structure-property relationships of complex materials. In this dissertation, classical molecular dynamic (MD) simulations were used to investigate the atomic structures, dynamic and other properties of two important glass systems—aluminosilicate glasses and borosilicate glasses, which are the basis of most industrial and technologically important glasses. Firstly, a comprehensive study of peralkaline Na2O-Al2O3-SiO2 glass with varying Al2O3/SiO2, Na2O/Al2O3, Na2O/SiO2 ratios has been performed to obtain better understanding of the composition–structure–property relationships in this glass system. More than 99% of Al were 4-coordinated in these glasses, validating that Na+ tend to charge balance [AlO4]- network forming units first …
Date: December 2018
Creator: Ren, Mengguo
System: The UNT Digital Library
Friction Stir Welding of Dissimilar Metals (open access)

Friction Stir Welding of Dissimilar Metals

Dissimilar metals joining have been used in many industry fields for various applications due to their technique and beneficial advantages, such as aluminum-steel and magnesium-steel joints for reducing automobile weight, aluminum-copper joint for reducing material cost in electrical components, steel-copper joints for usage in nuclear power plant, etc. The challenges in achieving dissimilar joints are as below. (1) Big difference in physical properties such as melting point and coefficient of thermal expansion led to residual stress and defects. (2) The miscibility issues resulted in either brittle intermetallic compound layer at the welded interface for miscible combinations (such as, aluminum-steel, aluminum-copper, aluminum-titanium, etc.) or no metallurgical bonding for immiscible combinations (such as magnesium-copper, steel-copper, etc.). For metallurgical miscible combinations, brittle intermetallic compounds formed at the welded interface created the crack initiation and propagation path during deformational tests. (3) Stress concentration appeared at the welded interface region during tensile testing due to mismatch in elastic properties of dissimilar materials. In this study, different combinations of dissimilar metals were joined with friction stir welding. Lap welding of 6022-T4 aluminum alloy/galvanized mild steel sheets and 6022-T4 aluminum alloy/DP600 steel sheets were achieved via friction stir scribe technology. The interlocking feature determining the fracture mode …
Date: December 2018
Creator: Wang, Tianhao
System: The UNT Digital Library
Effects of Transition Metal Oxide and Mixed-Network Formers on Structure and Properties of Borosilicate Glasses (open access)

Effects of Transition Metal Oxide and Mixed-Network Formers on Structure and Properties of Borosilicate Glasses

First, the effect of transition metal oxide (e.g., V2O5, Co2O3, etc.) on the physical properties (e.g., density, glass transition temperature (Tg), optical properties and mechanical properties) and chemical durability of a simplified borosilicate nuclear waste glass was investigated. Adding V2O5 in borosilicate nuclear waste glasses decreases the Tg, while increasing the fracture toughness and chemical durability, which benefit the future formulation of nuclear waste glasses. Second, structural study of ZrO2/SiO2 substitution in silicate/borosilicate glasses was systematically conducted by molecular dynamics (MD) simulation and the quantitative structure-property relationships (QSPR) analysis to correlate structural features with measured properties. Third, for bioactive glass formulation, mixed-network former effect of B2O3 and SiO2 on the structure, as well as the physical properties and bioactivity were studied by both experiments and MD simulation. B2O3/SiO2 substitution of 45S5 and 55S5 bioactive glasses increases the glass network connectivity, correlating well with the reduction of bioactivity tested in vitro. Lastly, the effect of optical dopants on the optimum analytical performance on atom probe tomography (APT) analysis of borosilicate glasses was explored. It was found that optical doping could be an effective way to improve data quality for APT analysis with a green laser assisted system, while laser spot size …
Date: December 2018
Creator: Lu, Xiaonan
System: The UNT Digital Library
Process Improvement of Surface Preparation of Structuraly Bonded Helicopter Detail Parts (open access)

Process Improvement of Surface Preparation of Structuraly Bonded Helicopter Detail Parts

The objective of this study was to increase the bond strength at the surface interface of a thin stainless-steel panel for structural bonding on a helicopter. To achieve this objective, six activation methods for applying the coating to the panel in the surface preparation process are presented and explored. Adhesion and roughness tests were conducted to determine which method consistently initiates the etch and improves the bond at the surface. Based on the test results, three methods proved to be effective in initiating the etch. Of the three effective methods, only one method exhibited significantly improved bond strength at the surface interface as well as consistently initiated the etch in solution. The applicability of this method is discussed, and recommendations are presented for further study.
Date: December 2018
Creator: Tafoya, Keirsten Breann
System: The UNT Digital Library