18 Matching Results

Results open in a new window/tab.

Alloy Development and High-Energy X-Ray Diffraction Studies of NiTiZr and NiTiHf High Temperature Shape Memory Alloys (open access)

Alloy Development and High-Energy X-Ray Diffraction Studies of NiTiZr and NiTiHf High Temperature Shape Memory Alloys

NiTi-based shape memory alloys (SMAs) offer a good combination of high-strength, ductility, corrosion resistance, and biocompatibility that has served them well and attracted the attention of many researchers and industries. The alloys unique thermo-mechanical ability to recover their initial shape after relatively large deformations by heating or upon unloading due to a characteristic reversible phase transformation makes them useful as damping devices, solid state actuators, couplings, etc. However, there is a need to increase the temperature of the characteristic phase transformation above 150 °C, especially in the aerospace industry where high temperatures are often seen. Prior researchers have shown that adding ternary elements (Pt, Pd, Au, Hf and Zr) to NiTi can increase transformation temperatures but most of these additions are extremely expensive, creating a need to produce cost-effective high temperature shape memory alloys (HTSMAs). Thus, the main objective of this research is to examine the relatively unstudied NiTiZr system for the ability to produce a cost effective and formable HTSMA. Transformation temperatures, precipitation paths, processability, and high-temperature oxidation are examined, specifically using high energy X-ray Diffraction (XRD) measurements, in NiTi-20 at.% Zr. This is followed by an in situ XRD study of the phase growth kinetics of the favorable …
Date: May 2018
Creator: Carl, Matthew A
System: The UNT Digital Library
Laser Surface Modification of AZ31B Mg Alloy Bio-Implant Material (open access)

Laser Surface Modification of AZ31B Mg Alloy Bio-Implant Material

Magnesium and its alloys are considered as the potential biomaterials due to their biocompatibility and biodegradable characteristics but suffer from poor corrosion performance. Various surface modification techniques are employed to improve their corrosion resistance. In present case, laser surface melting was carried out on AZ31B Mg alloy with various laser energy densities using a continuous wave ytterbium laser. Effect of laser treatment on phase and microstructure evolution was evaluated by X ray diffraction and scanning electron microscopy. Multi-physics thermal model predicted time temperature evolution along the depth of the laser treatment zone. Additionally, electrochemical method and bio-immersion test were employed to evaluate the corrosion behavior in simulated body fluid medium. Microstructure revealed grain refinement and even distribution of Mg17Al12 phase along the grain boundary for laser treated samples leading to substantial enhancement in the corrosion resistance of the laser treated samples compared to the untreated alloy. The laser processed samples also possessed a superior wettability in SBF solution than the untreated sample. This was further reflected in enhanced bio-integration behavior of laser processed samples. By changing the parameters of laser processing such as power, scanning speed, and fill spacing, a controllable corrosion resistance and bioactivity/biocompatibility of the implant material was …
Date: August 2018
Creator: Wu, Tso-chang
System: The UNT Digital Library
Design Principles for Metal-Coordinated Frameworks as Electrocatalysts for Energy Storage and Conversion (open access)

Design Principles for Metal-Coordinated Frameworks as Electrocatalysts for Energy Storage and Conversion

In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of metal coordinated frameworks for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Gibb's free energy, overpotential, charge transfer and ligands effect are evaluated. The charge transfer analysis shows the positive charges on the metal coordinated frameworks play an essential role in improving the electrochemical properties of the metal coordinated frameworks. Based on the calculations, design principles are introduced to rationally design and predict the electrochemical properties of metal coordinated frameworks as efficient catalysts for ORR and OER. An intrinsic descriptor is discovered for the first time, which can be used as a materials parameter for rational design of the metal coordinated frameworks for energy storage and conversion. The success of the design principles provides a better understanding of the mechanism behind ORR and OER and a screening approach for the best catalyst for energy storage and conversion.
Date: December 2018
Creator: Lin, Chun-Yu
System: The UNT Digital Library
High Temperature Water as an Etch and Clean for SiO2 and Si3N4 (open access)

High Temperature Water as an Etch and Clean for SiO2 and Si3N4

An environmentally friendly, and contamination free process for etching and cleaning semiconductors is critical to future of the IC industry. Under the right conditions, water has the ability to meet these requirements. Water becomes more reactive as a function of temperature in part because the number of hydronium and hydroxyl ions increase. As water approaches its boiling point, the concentration of these species increases over seven times their concentrations at room temperature. At 150 °C, when the liquid state is maintained, these concentrations increase 15 times over room temperature. Due to its enhanced reactivity, high temperature water (HTW) has been studied as an etch and clean of thermally grown SiO2, Si3N4, and low-k films. High temperature deuterium oxide (HT-D2O) behaves similarly to HTW; however, it dissociates an order of magnitude less than HTW resulting in an equivalent reduction in reactive species. This allowed for the effects of reactive specie concentration on etch rate to be studied, providing valuable insight into how HTW compares to other high temperature wet etching processes such as hot phosphoric acid (HPA). Characterization was conducted using Fourier transform infrared spectroscopy (FTIR) to determine chemical changes due to etching, spectroscopic ellipsometry to determine film thickness, profilometry to …
Date: December 2018
Creator: Barclay, Joshua David
System: The UNT Digital Library
Mechanisms of Formation and Effects of Transition Metal Oxides in Silicon Nitride on Steel Dry Sliding Contacts (open access)

Mechanisms of Formation and Effects of Transition Metal Oxides in Silicon Nitride on Steel Dry Sliding Contacts

Silicon nitride on steel sliding contacts may provide advantageous tribological properties over traditional self-mated pairs, however the friction and wear behavior at high sliding speeds (>1 m/s) is not well understood. Previous studies at low sliding speeds (< 1 m/s) have found that the wear mechanisms change as a function of the operating parameters, e.g. atmosphere, sliding speed, load, and temperature, due to the formation of transition metal oxides such as Fe2O3 and Fe3O4. This study detected transient effects of the dry silicon nitride on steel contact over a range of sliding speeds to understand their relation to tribochemical reactions and the resulting tribological behavior. Two sets of dry silicon nitride on steel experiments were conducted at 1.45 GPa maximum Hertzian pressure. The first set were low sliding speed reciprocating experiments, conducted at an average of 0.06 m/s, conducted at variable operating temperature, ranging from 23 °C to 1000 °C. In the low sliding speed experiments, transitions of the wear mechanism from adhesive wear, to abrasive wear, then to oxidative wear was observed when the operating temperature increased. The second set were high sliding speed experiments, conducted at variable sliding speeds, ranging from 1 m/s to 16 m/s. In the …
Date: December 2018
Creator: Harris, Michael D.
System: The UNT Digital Library
Surface Chemistry and Work Function of Irradiated and Nanoscale Thin Films Covered Indium Tin Oxides (open access)

Surface Chemistry and Work Function of Irradiated and Nanoscale Thin Films Covered Indium Tin Oxides

In this study, we used UV-ozone Ar sputtering, X-ray photoelectron and ultra-violet photoelectron spectroscopies and sputtering based depositions of RuO2 and Se nano-layers on indium tin oxides (ITOs). We elucidated the effect of Ar sputtering on the composition and chemistry of Sn rich ITO surface. We demonstrated that while a combination of UV-ozone radiation and Ar sputtering removes most of the hydrocarbons responsible for degrading the work function of ITO, it also removes significant amount of the segregated SN at the ITO surface that's responsible for its reasonable work function of 4.7eV. We also demonstrated for the first time that sputtering cleaning ITO surface leads to the reduction of the charge state of Sn from Sn4+ to Sn2+ that adds to the degradation of the work function. For the nano-layers coverage of ITO studies, we evaluated both RuO2 and Se. For RuO2 coated ITO, XPS showed the formation of a Ru-Sn-O ternary oxide. The RuO2 nano-layer reduced the oxidation state of Sn in the Sn-rich surface of ITO from +4 to +2. The best work function obtained for this system is 4.98eV, raising the effective work function of ITO by more than 0.5 eV. For the Se coated ITO studies, …
Date: May 2018
Creator: Che, Hui
System: The UNT Digital Library
A Study on NiTiSn Low-Temperature Shape Memory Alloys and the Processing of NiTiHf High-Temperature Shape Memory Alloys (open access)

A Study on NiTiSn Low-Temperature Shape Memory Alloys and the Processing of NiTiHf High-Temperature Shape Memory Alloys

Shape memory alloys (SMAs) operating as solid-state actuators pose economic and environmental benefits to the aerospace industry due to their lightweight, compact design, which provides potential for reducing fuel emissions and overall operating cost in aeronautical equipment. Despite wide applicability, the implementation of SMA technology into aerospace-related actuator applications is hindered by harsh environmental conditions, which necessitate extremely high or low transformation temperatures. The versatility of the NiTi-based SMA system shows potential for meeting these demanding material constraints, since transformation temperatures in NiTi can be significantly raised or lowered with ternary alloying elements and/or Ni:Ti ratio adjustments. In this thesis, the expansive transformation capabilities of the NiTi-based SMA system are demonstrated with a low and high-temperature NiTi-based SMA; each encompassing different stages of the SMA development process. First, exploratory work on the NiTiSn SMA system is presented. The viability of NiTiSn alloys as low-temperature SMAs (LTSMAs) was investigated over the course of five alloy heats. The site preference of Sn in near-equiatomic NiTi was examined along with the effects of solution annealing, Ni:Ti ratio adjustments, and precipitation strengthening on the thermomechanical properties of NiTiSn LTSMAs. Second, the thermomechanical processability of NiTiHf high-temperature SMA (HTSMA) wires is presented. The evolution of …
Date: May 2018
Creator: Young, Avery W
System: The UNT Digital Library
Processing-Structure-Property Relationships of Spark Plasma Sintered Boron Carbide and Titanium Diboride Ceramic Composites (open access)

Processing-Structure-Property Relationships of Spark Plasma Sintered Boron Carbide and Titanium Diboride Ceramic Composites

The aim of this study was to understand the processing – structure – property relationships in spark plasma sintered (SPS) boron carbide (B4C) and B4C-titanium diboride (TiB2) ceramic composites. SPS allowed for consolidation of both B4C and B4C-TiB2 composites without sintering additives, residual phases, e.g., graphite, and excessive grain growth due to long sintering times. A selection of composite compositions in 20% TiB2 feedstock powder increments from 0% to 100%, was sintered at 1900°C for 25 minutes hold time. A homogeneous B4C-TiB2 composite microstructure was determined with excellent distribution of TiB2 phase, while achieving ~99.5% theoretical density. An optimum B4C-23 vol.% TiB2 composite composition with low density of ~3.0 g/cm3 was determined that exhibited ~30-35% increase in hardness, fracture toughness, and flexural bend strength compared to commercial armor-grade B4C. This is a result of a) no residual graphitic carbon in the composites, b) interfacial microcrack toughening due to thermal expansion coefficient differences placing the B4C matrix in compression and TiB2 phase in tension, and c) TiB2 phase aids in crack deflection thereby increasing the amount of intergranular fracture. Collectively, the addition of TiB2 serves as a strengthening and toughening agent, and SPS shows promise for the manufacture of hybrid ceramic …
Date: May 2018
Creator: Rubink, William S.
System: The UNT Digital Library
Preventing Thermal Degradation of Pvc Insulation by Mixtures of Cross-Linking Agents and Antioxidants (open access)

Preventing Thermal Degradation of Pvc Insulation by Mixtures of Cross-Linking Agents and Antioxidants

Poly(vinyl chloride)(PVC) wire and cable insulation has poor thermal stability, causing the plasticizer to separate from the PVC chain and produce an oily residue, lowering the tensile elongation at break and thus increasing brittleness. We have added 4 wt.% of three different types of cross-linking agents and antioxidants, as well as mixtures of both, to improve the thermal stability of the plasticizer and tensile properties of PVC after thermal exposure. We performed tensile tests, tribological tests, profilometry, scanning electron microscopy(SEM) and water absorption determination before and after thermal exposure at 136 ℃ for 1 week. After adding the agents, elongation at break increased by 10 to 20 % while the wear rate and water absorption were lower than for the control sample. Less voids are seen in the SEM images after adding these two kinds of agents. The thermal resistance of the PVC cable insulation is best enhanced by combinations of cross-linking agents and antioxidants.
Date: May 2018
Creator: Kim, Taehwan
System: The UNT Digital Library
Investigation into the Semiconducting and Device Properties of MoTe2 and MoS2 Ultra-Thin 2D Materials (open access)

Investigation into the Semiconducting and Device Properties of MoTe2 and MoS2 Ultra-Thin 2D Materials

The push for electronic devices on smaller and smaller scales has driven research in the direction of transition metal dichalcogenides (TMD) as new ultra-thin semiconducting materials. These ‘two-dimensional' (2D) materials are typically on the order of a few nanometers in thickness with a minimum all the way down to monolayer. These materials have several layer-dependent properties such as a transition to direct band gap at single-layer. In addition, their lack of dangling bonding and remarkable response to electric fields makes them promising candidates for future electronic devices. For the purposes of this work, two 2D TMDs were studied, MoS2 and MoTe2. This dissertation comprises of three sections, which report on exploration of charge lifetimes, investigation environmental stability at elevated temperatures in air, and establishing feasibility of UV laser annealing for large area processing of 2D TMDs, providing a necessary knowledge needed for practical use of these 2D TMDs in optoelectronic and electronic devices. (1) A study investigating the layer-dependence on the lifetime of photo-generated electrons in exfoliated 2D MoTe2 was performed. The photo-generated lifetimes of excited electrons were found to be strongly surface dependent, implying recombination events are dominated by Shockley-Read-Hall effects (SRH). Given this, the measured lifetime was shown …
Date: May 2018
Creator: Sirota, Benjamin
System: The UNT Digital Library
Recycling of PVC and XLPE for High Impact Resistance in Spool Development (open access)

Recycling of PVC and XLPE for High Impact Resistance in Spool Development

My work focuses on taking waste wire-grade PVC = poly(vinyl chloride) and waste XLPE = cross-linked polyethylene and recycle them into small wire/cable spool technology in order to reduce waste cost and reduce cost of spool production. The PVC and XLPE were provided by Encore Wire Corp. of McKinney, TX; they have also defined the standard to which I am comparing my results. The end goal is to incorporate as much PVC and XLPE into the spools while maintaining material toughness, impact resistance, as well as cost-effectiveness in the implementation of the waste materials. The work has been divided into two primary sections, the first is focused on improving material strength through the addition of ceramic fillers. The second section is focused on adding PVC and XLPE into a stronger and highly cohesive polymer matrix and optimizing the concentration of the waste products. Since XLPE is non-polar while PVC is strongly polar, compatibilizers such as CPE (chlorinated polyethylene) and MA-DCP (maleic anhydride with dicumyl peroxide) were used to improve interactions between polar and non-polar constituents. Testing involved the tensile mechanical properties, tribology and thermal properties, namely dynamic mechanical analysis (DMA) and evaluation of thermal degradation by thermogravimetric analysis (TGA). Combining …
Date: May 2018
Creator: Granowski, Gregory A
System: The UNT Digital Library
Defining a Relationship between the Flexibility of Materials and Other Properties (open access)

Defining a Relationship between the Flexibility of Materials and Other Properties

Brittleness of a polymeric material has a direct relationship with the material's performance and furthermore shares an inverse relationship with that material's flexibility. The concept of flexibility of materials has been understood but merely explained with a hand-waving manner. Thus, it has never been defined by a calculation, thereby lacking the ability to determine a definite quantitative value for this characteristic. Herein, an equation is presented and proven which makes determining the value of flexibility possible. Such an equation could be used to predict a material's flexibility prior to testing it, thus saving money and valuable time for those in research and in industry. Substantiating evidence showing the relationship between flexibility of polymers and their respective mechanical properties is presented. Further relating the known tensile properties of a given polymer to its flexibility is expanded upon by proving its relationship to the linear coefficient of thermal expansion for each polymer. Additionally, determining flexibility for polymers whose chemical structures have been compromised by respective solvents has also been investigated to predict a solvent's impact on a polymer after exposure. Polymers examined through literature include polycarbonate (PC), polystyrene (PS), teflon (PTFE), styrene acrylonitrile (SAN), acrylonitrile butadiene styrene (ABS), poly(ethersulfone) (PES), low density …
Date: May 2018
Creator: Osmanson, Allison Theresa
System: The UNT Digital Library
Room and Elevated Temperature Sliding Wear Behavior of Cold Sprayed Ni-WC Composite Coatings (open access)

Room and Elevated Temperature Sliding Wear Behavior of Cold Sprayed Ni-WC Composite Coatings

The tribological properties of cold sprayed Ni-WC metal matrix composite (MMC) coatings were investigated under dry sliding conditions from room temperature (RT) up to 400°C, and during thermal cycling to explore their temperature adaptive friction and wear behavior. Characterization of worn surfaces was conducted using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy to determine the chemical and microstructural evolution during friction testing. Data provided insights into tribo-oxide formation mechanisms controlling friction and wear. It was determined that the steady-state coefficient of friction (CoF) decreased from 0.41 at RT to 0.32 at 400˚C, while the wear rate increased from 0.5×10-4 mm3/N·m at RT to 3.7×10-4 mm3/N·m at 400˚C. The friction reduction is attributed primarily to the tribochemical formation of lubricious NiO on both the wear track and transfer film adhered to the counterface. The increase in wear is attributed to a combination of thermal softening of the coating and a change in the wear mechanism from adhesive to more abrasive. In addition, the coating exhibited low friction behavior during thermal cycling by restoring the lubricious NiO phase inside the wear track at high temperature intervals. Therefore, cold sprayed Ni-WC coatings are potential candidates for elevated temperature and …
Date: August 2018
Creator: Torgerson, Tyler B.
System: The UNT Digital Library
Ultrasonic Processing of Aluminum 2139 and 7050 (open access)

Ultrasonic Processing of Aluminum 2139 and 7050

Acoustics is the study of all sound waves, with ultrasound classified as those frequencies above 20,000 Hz. Currently, ultrasound is being used in many industries for a variety of purposes such as ultrasonic imaging, ultrasonic assisted friction stir welding, and ultrasonic spot welding. Despite these uses, the effects of ultrasound on phase stability and resultant mechanical properties has been minimally analyzed. Here we study the impact waves play in ultrasonic welding and design an apparatus to maximize waves entering aluminum alloy samples. Aluminum 2139 and 7050 are used because they are precipitation strengthened by metastable phases so temperature change, and the corresponding phase stability, can greatly impact their strength. Results suggest that the ultrasonic welder primarily imposes a localized temperature spike due to friction, averaging over 200°C in a few seconds, which generally lowers the Vickers hardness due to coarsening or even dissolution of strengthening precipitates. Conversely, the new design increases the Vickers hardness by up to 30% over the initial hardness of approximately 63HV for aluminum 2139 and 83HV for aluminum 7050, respectively, while only increasing the temperature by an average of approximately 10°C. This new design was unable to achieve peak hardness, but the strengthening it achieved in …
Date: August 2018
Creator: Reed, Jordan Derek
System: The UNT Digital Library
Molecular Dynamics Simulations of the Structures and Properties of Aluminosilicate and Borosilicate Glasses (open access)

Molecular Dynamics Simulations of the Structures and Properties of Aluminosilicate and Borosilicate Glasses

Silicate glasses are the most common glass types and have impact on almost every aspect in our lives: from window, containers, to glass fibers for telecommunications. Unlike their crystalline counterparts, glass materials lack long-range order in their atomic arrangement but their structures do possess short and medium range characteristics that play critical roles in their physical and chemical properties. Despite active development of characterization techniques that have contributed to the understanding of glass structures, there remain key challenges in obtaining essential structural features of glasses. Atomistic computer simulations have become an increasingly important method in elucidating the atomic structures and in interpretation and/or prediction of composition-structure-property relationships of complex materials. In this dissertation, classical molecular dynamic (MD) simulations were used to investigate the atomic structures, dynamic and other properties of two important glass systems—aluminosilicate glasses and borosilicate glasses, which are the basis of most industrial and technologically important glasses. Firstly, a comprehensive study of peralkaline Na2O-Al2O3-SiO2 glass with varying Al2O3/SiO2, Na2O/Al2O3, Na2O/SiO2 ratios has been performed to obtain better understanding of the composition–structure–property relationships in this glass system. More than 99% of Al were 4-coordinated in these glasses, validating that Na+ tend to charge balance [AlO4]- network forming units first …
Date: December 2018
Creator: Ren, Mengguo
System: The UNT Digital Library
Friction Stir Welding of Dissimilar Metals (open access)

Friction Stir Welding of Dissimilar Metals

Dissimilar metals joining have been used in many industry fields for various applications due to their technique and beneficial advantages, such as aluminum-steel and magnesium-steel joints for reducing automobile weight, aluminum-copper joint for reducing material cost in electrical components, steel-copper joints for usage in nuclear power plant, etc. The challenges in achieving dissimilar joints are as below. (1) Big difference in physical properties such as melting point and coefficient of thermal expansion led to residual stress and defects. (2) The miscibility issues resulted in either brittle intermetallic compound layer at the welded interface for miscible combinations (such as, aluminum-steel, aluminum-copper, aluminum-titanium, etc.) or no metallurgical bonding for immiscible combinations (such as magnesium-copper, steel-copper, etc.). For metallurgical miscible combinations, brittle intermetallic compounds formed at the welded interface created the crack initiation and propagation path during deformational tests. (3) Stress concentration appeared at the welded interface region during tensile testing due to mismatch in elastic properties of dissimilar materials. In this study, different combinations of dissimilar metals were joined with friction stir welding. Lap welding of 6022-T4 aluminum alloy/galvanized mild steel sheets and 6022-T4 aluminum alloy/DP600 steel sheets were achieved via friction stir scribe technology. The interlocking feature determining the fracture mode …
Date: December 2018
Creator: Wang, Tianhao
System: The UNT Digital Library
Effects of Transition Metal Oxide and Mixed-Network Formers on Structure and Properties of Borosilicate Glasses (open access)

Effects of Transition Metal Oxide and Mixed-Network Formers on Structure and Properties of Borosilicate Glasses

First, the effect of transition metal oxide (e.g., V2O5, Co2O3, etc.) on the physical properties (e.g., density, glass transition temperature (Tg), optical properties and mechanical properties) and chemical durability of a simplified borosilicate nuclear waste glass was investigated. Adding V2O5 in borosilicate nuclear waste glasses decreases the Tg, while increasing the fracture toughness and chemical durability, which benefit the future formulation of nuclear waste glasses. Second, structural study of ZrO2/SiO2 substitution in silicate/borosilicate glasses was systematically conducted by molecular dynamics (MD) simulation and the quantitative structure-property relationships (QSPR) analysis to correlate structural features with measured properties. Third, for bioactive glass formulation, mixed-network former effect of B2O3 and SiO2 on the structure, as well as the physical properties and bioactivity were studied by both experiments and MD simulation. B2O3/SiO2 substitution of 45S5 and 55S5 bioactive glasses increases the glass network connectivity, correlating well with the reduction of bioactivity tested in vitro. Lastly, the effect of optical dopants on the optimum analytical performance on atom probe tomography (APT) analysis of borosilicate glasses was explored. It was found that optical doping could be an effective way to improve data quality for APT analysis with a green laser assisted system, while laser spot size …
Date: December 2018
Creator: Lu, Xiaonan
System: The UNT Digital Library
Process Improvement of Surface Preparation of Structuraly Bonded Helicopter Detail Parts (open access)

Process Improvement of Surface Preparation of Structuraly Bonded Helicopter Detail Parts

The objective of this study was to increase the bond strength at the surface interface of a thin stainless-steel panel for structural bonding on a helicopter. To achieve this objective, six activation methods for applying the coating to the panel in the surface preparation process are presented and explored. Adhesion and roughness tests were conducted to determine which method consistently initiates the etch and improves the bond at the surface. Based on the test results, three methods proved to be effective in initiating the etch. Of the three effective methods, only one method exhibited significantly improved bond strength at the surface interface as well as consistently initiated the etch in solution. The applicability of this method is discussed, and recommendations are presented for further study.
Date: December 2018
Creator: Tafoya, Keirsten Breann
System: The UNT Digital Library