Degree Discipline

Degree Level

States

Long-Term Citizen Science Water Monitoring Data: An Exploration of Accuracy over Space and Time (open access)

Long-Term Citizen Science Water Monitoring Data: An Exploration of Accuracy over Space and Time

The Texas Stream Team (TST) is one of an increasing number of citizen science water monitoring programs throughout the US which have been continuously collecting surface water quality data under quality assurance protocols for decades. Volunteer monitoring efforts have generated monitoring datasets that are long-term, continuous, and cover a large geographic area - characteristics shown to be valuable for scientists and professional agencies. However, citizen science data has been of limited use to researchers due to concerns about the accuracy of data collected by volunteers, and the decades of water quality monitoring data collected by TST volunteers is not widely used, if at all. A growing body of studies have attempted to address accuracy concerns by comparing volunteer data to professional data, but this has rarely been done with large-scale, existing datasets like those collected by TST. This study assesses the accuracy of the volunteer water quality data collected across the state of Texas by the TST citizen science program between 1992-2017 by comparing it to professional data from corresponding stations during the same time period, as well as comparing existing and experimental data from a local TST partner agency. The results indicate that even large-scale, existing volunteer and professional …
Date: December 2018
Creator: Albus, Kelly
System: The UNT Digital Library
Mass Spectrometry-Based Identification of Ceramic-Bound Archaeological Protein Residues: Method Validation, Residue Taphonomy, and Prospects (open access)

Mass Spectrometry-Based Identification of Ceramic-Bound Archaeological Protein Residues: Method Validation, Residue Taphonomy, and Prospects

Despite the variety of successful reports of the preservation, recovery, and identification of archaeological proteins in general, there are few positive reports regarding mass spectrometry-based identification of ceramic-bound proteins. In large part, this shortage is due to the lack of consideration for the unique taphonomic histories of such residues and, in general, methods development. Further, because negative results are rarely published, there is no baseline to which results can be compared. This paper attempts to address these challenges via a multi-pronged approach that uses mass spectrometry and complementary approaches to evaluate ceramic-bound protein preservation in both controlled, actualistic experiments, and in archaeological artifacts. By comparing the results obtained from protein-spiked, experimentally-aged ceramic to those obtained from both faunal and ceramic archaeological materials, an enhanced perspective on protein preservation and subsequent recovery and identification is revealed. This perspective, focusing on taphonomy, reveals why negative results may be the norm for ceramic artifacts when non-targeted methods are employed, and provides insight into how further method development may improve the likelihood of obtaining positive results.
Date: December 2018
Creator: Barker, Andrew Lewis
System: The UNT Digital Library