3 Matching Results

Results open in a new window/tab.

Detecting Component Failures and Critical Components in Safety Critical Embedded Systems using Fault Tree Analysis (open access)

Detecting Component Failures and Critical Components in Safety Critical Embedded Systems using Fault Tree Analysis

Component failures can result in catastrophic behaviors in safety critical embedded systems, sometimes resulting in loss of life. Component failures can be treated as off nominal behaviors (ONBs) with respect to the components and sub systems involved in an embedded system. A lot of research is being carried out to tackle the problem of ONBs. These approaches are mainly focused on the states (i.e., desired and undesired states of a system at a given point of time to detect ONBs). In this paper, an approach is discussed to detect component failures and critical components of an embedded system. The approach is based on fault tree analysis (FTA), applied to the requirements specification of embedded systems at design time to find out the relationship between individual component failures and overall system failure. FTA helps in determining both qualitative and quantitative relationship between component failures and system failure. Analyzing the system at design time helps in detecting component failures and critical components and helps in devising strategies to mitigate component failures at design time and improve overall safety and reliability of a system.
Date: May 2018
Creator: Bhandaram, Abhinav
System: The UNT Digital Library
Extracting Temporally-Anchored Knowledge from Tweets (open access)

Extracting Temporally-Anchored Knowledge from Tweets

Twitter has quickly become one of the most popular social media sites. It has 313 million monthly active users, and 500 million tweets are published daily. With the massive number of tweets, Twitter users share information about a location along with the temporal awareness. In this work, I focus on tweets where author of the tweets exclusively mentions a location in the tweet. Natural language processing systems can leverage wide range of information from the tweets to build applications like recommender systems that predict the location of the author. This kind of system can be used to increase the visibility of the targeted audience and can also provide recommendations interesting places to visit, hotels to stay, restaurants to eat, targeted on-line advertising, and co-traveler matching based on the temporal information extracted from a tweet. In this work I determine if the author of the tweet is present in the mentioned location of the tweet. I also determine if the author is present in the location before tweeting, while tweeting, or after tweeting. I introduce 5 temporal tags (before the tweet but > 24 hours; before the tweet but < 24 hours; during the tweet is posted; after the tweet is …
Date: May 2018
Creator: Doudagiri, Vivek Reddy
System: The UNT Digital Library
Towards a Unilateral Sensing System for Detecting Person-to-Person Contacts (open access)

Towards a Unilateral Sensing System for Detecting Person-to-Person Contacts

The contact patterns among individuals can significantly affect the progress of an infectious outbreak within a population. Gathering data about these interaction and mixing patterns is essential to assess computational modeling of infectious diseases. Various self-report approaches have been designed in different studies to collect data about contact rates and patterns. Recent advances in sensing technology provide researchers with a bilateral automated data collection devices to facilitate contact gathering overcoming the disadvantages of previous approaches. In this study, a novel unilateral wearable sensing architecture has been proposed that overcome the limitations of the bi-lateral sensing. Our unilateral wearable sensing system gather contact data using hybrid sensor arrays embedded in wearable shirt. A smartphone application has been used to transfer the collected sensors data to the cloud and apply deep learning model to estimate the number of human contacts and the results are stored in the cloud database. The deep learning model has been developed on the hand labelled data over multiple experiments. This model has been tested and evaluated, and these results were reported in the study. Sensitivity analysis has been performed to choose the most suitable image resolution and format for the model to estimate contacts and to analyze …
Date: December 2018
Creator: Amara, Pavan Kumar
System: The UNT Digital Library