Degree Discipline

Degree Level

Detection of Harmful Chemicals in the Air using Portable Membrane Inlet Mass Spectrometry (open access)

Detection of Harmful Chemicals in the Air using Portable Membrane Inlet Mass Spectrometry

Portable mass spectrometry has become an important analytical tool for chemical detection and identification outside of a lab setting. Many variations and applications have been developed to benefit various fields of science. Membrane inlet mass spectrometry is used to allow certain analytes to pass into the mass spectrometer without breaking vacuum or letting in large particulate matter. These two important analytical tools have been applied to the detection of harmful chemicals in the air. Earth-based separations and reverse gas stack modelling are useful mathematical tools that can be used to locate the source of a chemical release by back calculation. Earth-based separations studies the way different molecules will diffuse and separate through the air. Reverse gas stack modelling refers to the concentration differences of a chemical in relation to its distance from its source. These four analytical techniques can be combined to quickly and accurately locate various harmful chemical releases. The same system can be used for many applications and has been tested to detect harmful chemicals within and air-handling system. The monitoring of air-handling systems can greatly reduce the threat of harm to the building occupants by detecting hazardous chemicals and shutting off the air flow to minimize human …
Date: August 2018
Creator: Kretsch, Amanda Renee
System: The UNT Digital Library
Synthesis and Studies of AzaBODIPY Derived Donor-Acceptor Systems for Light Induced Charge Separation (open access)

Synthesis and Studies of AzaBODIPY Derived Donor-Acceptor Systems for Light Induced Charge Separation

The efficiency and mechanism of electron- and energy transfer events occurring in both in natural and synthetic donor-acceptor systems depend on their distance, relative orientation, and the nature of the surrounding media. Fundamental knowledge gained from model studies is key in building efficient energy harvesting and optoelectronic devices. Faster charge separation and slower charge recombination in donor-acceptor systems is often sought out. In our continued effort to build donor-acceptor systems using near-IR sensitizers, in the present study, we report ground and excited state charge transfer in newly synthesized, directly linked, tetrads featuring bisdonor (donor = phenothiazine and ferrocene), BF2-chelated azadipyrromethane (azaBODIPY) and C60 entities. The tetrads synthesized using multi-step synthetic procedure revealed strong charge transfer interactions in the ground state involving the donor and azaBODIPY entities. The near-IR emitting azaBODIPY acted as a photosensitizing electron acceptor along with fullerene while the phenothiazine and ferrocene entities acted as electron donors. The triads (bisdonor-azaBODIPY) and tetrads revealed ultrafast photoinduced charge separation leading to D•+-azaBODIPY•–-C60 and D•+-azaBODIPY-C60•– (D = phenothiazine or ferrocene) charge separated states from the femtosecond transient absorption spectral studies in both polar and nonpolar solvent media. The charge separated states populated the triplet excited state of azaBODIPY prior returning to …
Date: December 2018
Creator: Collini, Melissa A.
System: The UNT Digital Library