Degree Department

1 Matching Results

Results open in a new window/tab.

Evaluating Sea-Level Rise Hazards on Coastal Archaeological Sites, Trinity Bay, Texas (open access)

Evaluating Sea-Level Rise Hazards on Coastal Archaeological Sites, Trinity Bay, Texas

This study uses the predictive modeling program Sea-Levels Affecting Marshes Model (SLAMM) to evaluate sea-level rise hazards, such as erosion and inundation, on coastal archaeological sites with a vertical rise of sea level of .98 meters from 2006 to 2100. In total 177 archaeological site locations were collected and georeferenced over GIS outputs maps of wetlands, erosion presence, surface elevation, and accretion. Wetlands data can provide useful information about characteristics of the wetland classes, which make a difference in the ability for coastal archaeological sites to combat sea level rise. Additionally, the study evaluated predicted erosion of archaeological sites by presence or absence of active erosion on a cell-by-cell basis. Elevation map outputs relative to mean tide level allowed for a calculation of individual archaeological site datums to use NOAA tidal databases to identify the potential for their inundation. Accretion maps acquired from the SLAMM run determined the potential for the archaeological site locations to combat rising sea levels and potentially provide protection from wave effects. Results show that the most significant hazard predicted to affect coastal archaeological sites is inundation. Approximately 54% of the total archaeological sites are predicted to be inundated at least half the time by 2100. …
Date: May 2018
Creator: Elliott, Patrick
System: The UNT Digital Library