Arduino Based Hybrid MPPT Controller for Wind and Solar (open access)

Arduino Based Hybrid MPPT Controller for Wind and Solar

Renewable power systems are becoming more affordable and provide better options than fossil-fuel generation, for not only the environment, but a benefit of a reduced cost of operation. Methods to optimize charging batteries from renewable technologies is an important subject for off-grid and micro-grids, and is becoming more relevant for larger installations. Overcharging or undercharging the battery can result in failure and reduction of battery life. The Arduino hybrid MPPT controller takes the advantage of solar and wind energy sources by controlling two systems simultaneously. The ability to manage two systems with one controller is better for an overall production of energy, cost, and manageability, at a minor expense of efficiency. The hybrid MPPT uses two synchronous buck DC-DC converters to control both wind and solar. The hybrid MPPT performed at a maximum of 93.6% efficiency, while the individual controller operated at a maximum 97.1% efficiency when working on the bench test. When designing the controller to manage power production from a larger generator, the inductor size was too large due to the frequency provided by the Arduino. A larger inductor means less allowable current to flow before the inductor becomes over saturated, reducing the efficiency of the controller. Utilizing …
Date: December 2017
Creator: Assaad, Michael
System: The UNT Digital Library
Spectrum Analysis and Prediction Using Long Short Term Memory Neural Networks and Cognitive Radios (open access)

Spectrum Analysis and Prediction Using Long Short Term Memory Neural Networks and Cognitive Radios

One statement that we can make with absolute certainty in our current time is that wireless communication is now the standard and the de-facto type of communication. Cognitive radios are able to interpret the frequency spectrum and adapt. The aim of this work is to be able to predict whether a frequency channel is going to be busy or free in a specific time located in the future. To do this, the problem is modeled as a time series problem where each usage of a channel is treated as a sequence of busy and free slots in a fixed time frame. For this time series problem, the method being implemented is one of the latest, state-of-the-art, technique in machine learning for time series and sequence prediction: long short-term memory neural networks, or LSTMs.
Date: December 2017
Creator: Hernandez Villapol, Jorge Luis
System: The UNT Digital Library
Human-Machine Interface Using Facial Gesture Recognition (open access)

Human-Machine Interface Using Facial Gesture Recognition

This Master thesis proposes a human-computer interface for individual with limited hand movements that incorporate the use of facial gesture as a means of communication. The system recognizes faces and extracts facial gestures to map them into Morse code that would be translated in English in real time. The system is implemented on a MACBOOK computer using Python software, OpenCV library, and Dlib library. The system is tested by 6 students. Five of the testers were not familiar with Morse code. They performed the experiments in an average of 90 seconds. One of the tester was familiar with Morse code and performed the experiment in 53 seconds. It is concluded that errors occurred due to variations in features of the testers, lighting conditions, and unfamiliarity with the system. Implementing an auto correction and auto prediction system will decrease typing time considerably and make the system more robust.
Date: December 2017
Creator: Toure, Zikra
System: The UNT Digital Library
Investigation of the Effect of Functional Units/Connectivity Arrangement on Energy Consumption of Reconfigurable Architectures Using an Interactive Design Framework (open access)

Investigation of the Effect of Functional Units/Connectivity Arrangement on Energy Consumption of Reconfigurable Architectures Using an Interactive Design Framework

Allocation of expensive resources, (such as Multiplier) onto the CGRA has been of interest from quite some time. For these architectural solutions to fulfill the designers' requirements, it is of utmost importance that the design offers high performance, low power consumption, and effective area utilization. The allocation problem is studied using the UntangledII gaming environment, which has been developed at the Reconfigurable Computing Lab at UNT to discover the design of custom domain-specific architectures. This thesis explores several case-studies to investigate the arrangement of functional units and interconnects to achieve a low power, high performance, and flexible heterogeneous designs that can fit for a suite of applications. In the later part, several human mapping strategies of top and bottom players to design a custom domain-specific architecture are presented. Some common trends that were examined while analyzing the mapping strategies of the players are also discussed.
Date: August 2017
Creator: Bhargava, Arpita
System: The UNT Digital Library
A Convergence Analysis of LDPC Decoding Based on Eigenvalues (open access)

A Convergence Analysis of LDPC Decoding Based on Eigenvalues

Low-density parity check (LDPC) codes are very popular among error correction codes because of their high-performance capacity. Numerous investigations have been carried out to analyze the performance and simplify the implementation of LDPC codes. Relatively slow convergence of iterative decoding algorithm affects the performance of LDPC codes. Faster convergence can be achieved by reducing the number of iterations during the decoding process. In this thesis, a new approach for faster convergence is suggested by choosing a systematic parity check matrix that yields lowest Second Smallest Eigenvalue Modulus (SSEM) of its corresponding Laplacian matrix. MATLAB simulations are used to study the impact of eigenvalues on the number of iterations of the LDPC decoder. It is found that for a given (n, k) LDPC code, a parity check matrix with lowest SSEM converges quickly as compared to the parity check matrix with high SSEM. In other words, a densely connected graph that represents the parity check matrix takes more iterations to converge than a sparsely connected graph.
Date: August 2017
Creator: Kharate, Neha Ashok
System: The UNT Digital Library
Formation Control of Multi-Agent Systems (open access)

Formation Control of Multi-Agent Systems

Formation control is a classical problem and has been a prime topic of interest among the scientific community in the past few years. Although a vast amount of literature exists in this field, there are still many open questions that require an in-depth understanding and a new perspective. This thesis contributes towards exploring the wide dimensions of formation control and implementing a formation control scheme for a group of multi-agent systems. These systems are autonomous in nature and are represented by double integrated dynamics. It is assumed that the agents are connected in an undirected graph and use a leader-follower architecture to reach formation when the leading agent is given a velocity that is piecewise constant. A MATLAB code is written for the implementation of formation and the consensus-based control laws are verified. Understanding the effects on formation due to a fixed formation geometry is also observed and reported. Also, a link that describes the functional similarity between desired formation geometry and the Laplacian matrix has been observed. The use of Laplacian matrix in stability analysis of the formation is of special interest.
Date: August 2017
Creator: Mukherjee, Srijita
System: The UNT Digital Library
Development and Analysis of a Mobile Node Tracking Antenna Control System (open access)

Development and Analysis of a Mobile Node Tracking Antenna Control System

A wireless communication system allows two parties to exchange information over long distances. The antenna is the component of a wireless communication system that allows information to be converted into electromagnetic radiation that propagates through the air. A system using an antenna with a highly directional beam pattern allows for high power transmission and reception of data. For a directional antenna to serve its purpose, it must be accurately pointed at the object it is communicating with. To communicate with a mobile node, knowledge of the mobile node's position must be gained so the directional antenna can be regularly pointed toward the moving target. The Global Positioning System (GPS) provides an accurate source of three-dimensional position information for the mobile node. This thesis develops an antenna control station that uses GPS information to track a mobile node and point a directional antenna toward the mobile node. Analysis of the subsystems used and integrated system test results are provided to assess the viability of the antenna control station.
Date: August 2017
Creator: Hensley, Phillip Hayden
System: The UNT Digital Library
Optimization of an SDR Based Aerial Base Station (open access)

Optimization of an SDR Based Aerial Base Station

Most times people are unprepared to face natural disasters resulting in chaos, increased number of deaths, etc.Emergency responders need an efficiently working communication network to get in touch with the emergency services like hospitals, police, fire and rescue as well as people who are stranded. Such a network is also the need of the hour for survivors to contact their near and dear ones. One of the major barriers of communication during an emergency is the destruction of network elements. In case the communication devices survive the calamity, odds of the network getting congested are certainly high because almost everyone will be trying to use the same network resources. An important factor when dealing with emergency situations is the calls for an immediate response and an efficient Emergency Communication Systems (ECS). Currently there is a capability gap between existing ECS solutions and what we dream of achieving. Most current solutions do not meet cost or mobility constraints. An inexpensive, portable and mobile system will fulfill this capability gap. The main purpose of this research is to optimize the altitude and received signal strength of an aerial base station to provide maximum radio coverage on the ground as well as propose …
Date: August 2017
Creator: Mathews, Steffy Ann
System: The UNT Digital Library
Leader-Follower Model and Impact of Mobility on Consensus Building (open access)

Leader-Follower Model and Impact of Mobility on Consensus Building

Wireless sensor networks are an indispensable tool in this highly connected world. WSNs have been the focus of research efforts in areas of communication, electronics and control for many years. Advancements in the fields of MEMS, RF and digital circuit technology has led to the development of low cost and extremely power efficient smart sensors. This has led to the need of a fast, reliable and inexpensive method of consensus building for these sensor networks. Basic concepts of graph theory and consensus building are explained in this thesis. This thesis reviews the models and strategies for consensus building present in the literature. The shortcomings of these models are explained through examples and a leader-follower model based consensus building strategy is presented. Algorithm to convert any graph into a bipartite graph by edge removal and a strategy to select effective leaders based on a weighted combination of node centrality, ratio of leaders to the total number of nodes and presence of leaf nodes in the group is presented in this thesis. Proposed leader-follower model is compared against classic models for consensus building are compared and proven to be better. Mobility is studied using deterministic and random mobility models to show the …
Date: May 2017
Creator: Singh, Ramanpreet
System: The UNT Digital Library
Practical Evaluation of a Software Defined Cellular Network (open access)

Practical Evaluation of a Software Defined Cellular Network

This thesis proposes a design of a rapidly deployable cellular network prototype that provides voice and data communications and it is interoperable with legacy devices and the existing network infrastructure. The prototype is based on software defined radio and makes use of IEEE 802.11 unlicensed wireless radio frequency (RF) band for backhaul link and an open source GSM implementation software. The prototype is also evaluated in environments where there is limited control of the radio frequency landscape, and using Voice Over Internet Protocol (VoIP) performance metrics to measure the quality of service. It is observed that in environments where the IEEE 802.11 band is not heavily utilized, a large number of calls are supported with good quality of service. However, when this band is heavily utilized only a few calls can be supported as the quality of service rapidly degrades with increasing number of calls, which is due to interference. It is concluded that in order to achieve tolerable voice quality, unused licensed spectrum is needed for backhaul communication between base stations.
Date: May 2017
Creator: Agbogidi, Oghenetega
System: The UNT Digital Library
Improving the Gameplay Experience and Guiding Bottom Players in an Interactive Mapping Game (open access)

Improving the Gameplay Experience and Guiding Bottom Players in an Interactive Mapping Game

In game based learning, motivating the players to learn by providing them a desirable gameplay experience is extremely important. However, it's not an easy task considering the quality of today's commercial non-educational games. Throughout the gameplay, the player should neither get overwhelmed nor under-challenged. The best way to do so is to monitor the player's actions in the game because these actions can tell the reason behind the player's performance. They can also tell about the player's lacking competencies or knowledge. Based on this information, in-game educational interventions in the form of hints can be provided to the player. The success of such games depends on their interactivity, motivational outlook and thus player retention. UNTANGLED is an online mapping game based on crowd-sourcing, developed by Reconfigurable Computing Lab, UNT for the mapping problem of CGRAs. It is also an educational game for teaching the concepts of reconfigurable computing. This thesis performs qualitative comparative analysis on gameplays of low performing players of UNTANGLED. And the implications of this analysis are used to provide recommendations for improving the gameplay experience for these players by guiding them. The recommendations include strategies to reach a high score and a compact solution, hints in the …
Date: May 2017
Creator: Ambekar, Kiran
System: The UNT Digital Library
A Study of Mobility Models based on Spatial Node Distribution and Area Coverage (open access)

A Study of Mobility Models based on Spatial Node Distribution and Area Coverage

Mobile wireless sensor networks are not widely implemented in the real world, even after years of research carried out in this field. One reason is the lack of understanding of the impact that mobility has on network performance. The simulation and emulation of mobile wireless sensor networks is necessary before they are deployed for the real-world applications. This thesis presents a simulation-based study of different mobility models. The total area coverage that depends on the pattern of node movements is observed through simulations. The spatial distribution of node locations is also studied. Various synthetic mobility models available are explored based on their theoretical descriptions. ‘BonnMotion' is used as the network simulator for investigating different mobility scenarios. The results obtained after simulations are imported to MATLAB and the analysis of node movements is done through various plots and inferences from the data. The comparison of mobility models is also discussed based on their spatial node distribution in the simulated scenarios.
Date: May 2017
Creator: Alla, Sindhu
System: The UNT Digital Library
EEG Signal Analysis in Decision Making (open access)

EEG Signal Analysis in Decision Making

Decision making can be a complicated process involving perception of the present situation, past experience and knowledge necessary to foresee a better future. This cognitive process is one of the essential human ability that is required from everyday walk of life to making major life choices. Although it may seem ambiguous to translate such a primitive process into quantifiable science, the goal of this thesis is to break it down to signal processing and quantifying the thought process with prominence of EEG signal power variance. This paper will discuss the cognitive science, the signal processing of brain signals and how brain activity can be quantifiable through data analysis. An experiment is analyzed in this thesis to provide evidence that theta frequency band activity is associated with stress and stress is negatively correlated with concentration and problem solving, therefore hindering decision making skill. From the results of the experiment, it is seen that theta is negatively correlated to delta and beta frequency band activity, thus establishing the fact that stress affects internal focus while carrying out a task.
Date: May 2017
Creator: Salma, Nabila
System: The UNT Digital Library
Simulink® Based Design and Implementation of Wireless Sensor Networks (open access)

Simulink® Based Design and Implementation of Wireless Sensor Networks

A wireless sensor network (WSN) is a spatially distributed network used to monitor the physical and environmental conditions such as temperature, pressure, sound, humidity, heat, etc. WSNs can be modeled using different simulation frameworks like OMNeT++, Prowler, Atarraya, PiccSIM, Network Simulator, etc. In this research, Simulink framework was used to model WSN system. The complete WSN consisting of transmitting nodes, communication channel, and receiver nodes are built in the Simulink framework. Orthogonal frequency division multiplexing technique was used to transmit the information. The implemented wireless sensor system behavior is studied using temperature as the measurement parameter at different values of signal to noise ratio. The plots of bit error rate versus signal to noise ratio and frame error rate versus signal to noise ratio are generated in the Simulink framework. It is easy to study the effect of different physical layer parameters on the performance of wireless sensor networks by implementing WSN in the Simulink framework.
Date: December 2017
Creator: Nune, Raju
System: The UNT Digital Library
Moteino-Based Wireless Data Transfer for Environmental Monitoring (open access)

Moteino-Based Wireless Data Transfer for Environmental Monitoring

Data acquisition through wireless sensor networks (WSNs) has enormous potential for scalable, distributed, real-time observations of monitored environmental parameters. Despite increasing versatility and functionalities, one critical factor that affects the operation of WSNs is limited power. WSN sensor nodes are usually battery powered, and therefore the long-term operation of the WSN greatly depends on battery capacity and the node's power consumption rate. This thesis focuses on WSN node design to reduce power consumption in order to achieve sustainable power supply. For this purpose, this thesis proposes a Moteino-based WSN node and an energy efficient duty cycle that reduces current consumption in standby mode using an enhanced watchdog timer. The nodes perform radio communication at 915 MHz, for short intervals (180ms) every 10 minutes, and consume 6.8 mA at -14dBm. For testing, the WSN node monitored a low-power combined air temperature, relative humidity, and barometric pressure sensor, together with a typical soil moisture sensor that consumes more power. Laboratory tests indicated average current consumption of ~30µA using these short radio transmission intervals. After transmission tests, field deployment of a star-configured network of nine of these nodes and one gateway node provides a long-term platform for testing under rigorous conditions. A webserver …
Date: May 2017
Creator: Iyiola, Samuel
System: The UNT Digital Library
OPNET Based Design and Performance Evaluation of ZigBee Networks (open access)

OPNET Based Design and Performance Evaluation of ZigBee Networks

ZigBee is a substandard of IEEE 802.15 family that is specially designed to take care of factors such as power, data rate and area that primarily affect network performance. This has controlling and monitoring capability, which finds potential applications in different sectors. ZigBee allows the concept of hybrid networks and mobility. A comprehensive analysis of ZigBee networks was carried out by constructing and simulating the networks to evaluate the performance in terms of throughput, delay, network load, and packets dropped. This research is aimed at evaluating the effect of network topology on the system performance. A careful review of simulation platforms brought the conclusion of using OPNET Modeler which has the required frame work. Different network topologies of simple and hybrid were built and simulated. Throughout the simulations, the best-case scenarios were drawn to the conclusion by the graphical analysis of parameters of evaluation. Mobile networks were constructed and simulated to investigate the effect of mobility on communication.
Date: December 2017
Creator: Nurubhashu, Mabusubhan Vali
System: The UNT Digital Library
Emergent Functionality and Controllability in Beamforming System (open access)

Emergent Functionality and Controllability in Beamforming System

This dissertation presents beamforming designs. Using novel techniques and methods, the performance of the beamforming is improved on dual-band, tri-band, flexible function, tunable function in THz, and dynamic controllability on incident wave.
Date: December 2017
Creator: Ren, Han
System: The UNT Digital Library
A Cognitive Radio Application through Opportunistic Spectrum Access (open access)

A Cognitive Radio Application through Opportunistic Spectrum Access

In wireless communication systems, one of the most important resources being focused on all the researchers is spectrum. A cognitive radio (CR) system is one of the efficient ways to access the radio spectrum opportunistically, and efficiently use the available underutilized licensed spectrum. Spectrum utilization can be significantly enhanced by developing more applications with adopting CR technology. CR systems are implemented using a radio technology called software-defined radios (SDR). SDR provides a flexible and cost-effective solution to fulfil the requirements of end users. We can see a lot of innovations in Internet of Things (IoT) and increasing number of smart devices. Hence, a CR system application involving an IoT device is studied in this thesis. Opportunistic spectrum access involves two tasks of CR system: spectrum sensing and dynamic spectrum access. The functioning of the CR system is rest upon the spectrum sensing. There are different spectrum sensing techniques used to detect the spectrum holes and a few of them are discussed here in this thesis. The simplest and easiest to implement energy detection spectrum sensing technique is used here to implement the CR system. Dynamic spectrum access involves different models and strategies to access the spectrum. Amongst the available models, …
Date: May 2017
Creator: Bhadane, Kunal
System: The UNT Digital Library
Case Studies to Learn Human Mapping Strategies in a Variety of Coarse-Grained Reconfigurable Architectures (open access)

Case Studies to Learn Human Mapping Strategies in a Variety of Coarse-Grained Reconfigurable Architectures

Computer hardware and algorithm design have seen significant progress over the years. It is also seen that there are several domains in which humans are more efficient than computers. For example in image recognition, image tagging, natural language understanding and processing, humans often find complicated algorithms quite easy to grasp. This thesis presents the different case studies to learn human mapping strategy to solve the mapping problem in the area of coarse-grained reconfigurable architectures (CGRAs). To achieve optimum level performance and consume less energy in CGRAs, place and route problem has always been a major concern. Making use of human characteristics can be helpful in problems as such, through pattern recognition and experience. Therefore to conduct the case studies a computer mapping game called UNTANGLED was analyzed as a medium to convey insights of human mapping strategies in a variety of architectures. The purpose of this research was to learn from humans so that we can come up with better algorithms to outperform the existing algorithms. We observed how human strategies vary as we present them with different architectures, different architectures with constraints, different visualization as well as how the quality of solution changes with experience. In this work all …
Date: May 2017
Creator: Malla, Tika K.
System: The UNT Digital Library
BLE Controller Module for Wireless Sensor Networks (open access)

BLE Controller Module for Wireless Sensor Networks

Sensors have been an integral part of our life since a long time. Traditionally, the transmit information to a data collection center through a physical wire. However, with the introduction of Bluetooth Low Energy (BLE) communication protocol, more research is being done into the field of wireless sensor networks (WSN). BLE was introduced to target low power applications. The CC2650 Launchpad designed by Texas Instruments (TI) can lead to a bulky final product. The aim was to design hardware for the CC2650 micro-controller with the aim of making it more compact for use in WSNs. A top-down approach was used wherein the available product is studied to identify the redundant and reverse engineer it to design a new product. A 2 layer printed circuit board (PCB) was designed which resulted in a 64 percent decrease in size compared to the Launchpad. Also, experiments were performed to test the proof of concept.
Date: August 2017
Creator: Vaswani, Mohit Suresh
System: The UNT Digital Library