Degree Discipline

3 Matching Results

Results open in a new window/tab.

The One Electron Basis Set: Challenges in Wavefunction and Electron Density Calculations (open access)

The One Electron Basis Set: Challenges in Wavefunction and Electron Density Calculations

In the exploration of chemical systems through quantum mechanics, accurate treatment of the electron wavefunction, and the related electron density, is fundamental to extracting information concerning properties of a system. This work examines challenges in achieving accurate chemical information through manipulation of the one-electron basis set.
Date: May 2016
Creator: Mahler, Andrew
System: The UNT Digital Library
Theoretical Analysis of Drug Analogues and VOC Pollutants (open access)

Theoretical Analysis of Drug Analogues and VOC Pollutants

While computational chemistry methods have a wide range of applications within the set of traditional physical sciences, very little is being done in terms of expanding their usage into other areas of science where these methods can help clarify research questions. One such promising field is Forensic Science, where detailed, rapidly acquired sets of chemical data can help in decision-making at a crime scene. As part of an effort to create a database that fits these characteristics, the present work makes use of computational chemistry methods to increase the information readily available for the rapid identification and scheduling of drugs to the forensic scientist. Ab initio geometry optimizations, vibrational spectra calculations and ESI-MS fragmentation prediction of a group of common psychedelics are here presented. In addition, we describe an under development graphical user interface to perform ab initio calculations using the GAMESS software package in a more accessible manner. Results show that the set of theoretical techniques here utilized, closely approximate experimental data. Another aspect covered in this work is the implementation of a boiling point estimation method based on group contributions to generate chemical dispersion areas with the ALOHA software package. Once again, theoretical results showed to be in …
Date: August 2016
Creator: Garibay, Luis K.
System: The UNT Digital Library
Quantum Chemistry Calculations of Energetic and Spectroscopic Properties of p- and f-Block Molecules (open access)

Quantum Chemistry Calculations of Energetic and Spectroscopic Properties of p- and f-Block Molecules

Quantum chemical methods have been used to model a variety of p- and f-block chemical species to gain insight about their energetic and spectroscopic properties. As well, the studies have provided understanding about the utility of the quantum mechanical approaches employed for the third-row and lanthanide species. The multireference ab initio correlation consistent Composite Approach (MR-ccCA) was utilized to predict dissociation energies for main group third-row molecular species, achieving energies within 1 kcal mol-1 on average from those of experiment and providing the first demonstration of the utility of MR-ccCA for third-row species. Multireference perturbation theory was utilized to calculate the electronic states and dissociation energies of NdF2+, providing a good model of the Nd-F bond in NdF3 from an electronic standpoint. In further work, the states and energies of NdF+ were determined using an equation of motion coupled cluster approach and the similarities for both NdF2+ and NdF were noted. Finally, time-dependent density functional theory and the static exchange approximation for Hartree-Fock in conjunction with a fully relativistic framework were used to calculate the L3 ionization energies and electronic excitation spectra as a means of characterizing uranyl (UO22+) and the isoelectronic compounds NUO+ and UN2.
Date: August 2016
Creator: South, Christopher James
System: The UNT Digital Library