Degree Discipline

Month

1 Matching Results

Results open in a new window/tab.

Synthesis of Peropyrene and Tetracene Derivatives for Photochemical Applications (open access)

Synthesis of Peropyrene and Tetracene Derivatives for Photochemical Applications

A novel route for the synthesis of the polycyclic aromatic hydrocarbon peropyrene (Pp) is reported along with the efforts to synthesize derivatives of Pp, 2,2′- and 5,5′-linked tetracene dimers as candidates for study as singlet fission materials in photovoltaic devices. Peropyrene was synthesized by the McMurry coupling conditions from phenalenone and low-valent titanium species. The crystal structure of Pp is formed by π-stacked molecular pairs in a herringbone arrangement. The direct functionalization of Pp was studied, and several indirect methods for the functionalization of Pp via phenalenone derivatives are reported. Nucleophilicly dependent, regioselective Michael addition pathways for phenalenone are described. Phenalenone forms a nucleophilic complex with bispinacolatodiboron and yields chiral 3,3′-linked phenalenone dimers and a bicyclo[3.2.1]octane derivative product of an unusual 3,4 addition. An active complex product of phenalenone and (dimethylphenylsilyl)boronic acid pinacolic ester forms Pp directly. The synthesis of 2,2′- and 5,5′-linked tetracene dimers led to the study of the reduction of 1-arylprop-2-yn-1-ol derivatives via TFA-catalyzed hydride transfer from triethylsilane. Substrates with terminal and TMS-protected alkynes showed silane exchange upon reduction. A TMS-protected, terminal alkyne became triethylsilyl-protected by about 50% whereas only triethylsilyl-protected, terminal alkyne was observed from the reduction of an unprotected, terminal alkyne. A new conformational polymorph …
Date: May 2015
Creator: Rodríguez López, Marco Tulio
System: The UNT Digital Library