Degree Discipline

Degree Level

Acceptor-sensitizers for Nanostructured Oxide Semiconductor in Excitonic Solar Cells (open access)

Acceptor-sensitizers for Nanostructured Oxide Semiconductor in Excitonic Solar Cells

Organic dyes are examined in photoelectrochemical systems wherein they engage in thermal (rather than photoexcited) electron donation into metal oxide semiconductors. These studies are intended to elucidate fundamental parameters of electron transfer in photoelectrochemical cells. Development of novel methods for the structure/property tuning of electroactive dyes and the preparation of nanostructured semiconductors have also been discovered in the course of the presented work. Acceptor sensitized polymer oxide solar cell devices were assembled and the impact of the acceptor dyes were studied. The optoelectronic tuning of boron-chelated azadipyrromethene dyes has been explored by the substitution of carbon substituents in place of fluoride atoms at boron. Stability of singlet exited state and level of reduction potential of these series of aza-BODIPY coumpounds were studied in order to employ them as electron-accepting sensitizers in solid state dye sensitized solar cells.
Date: August 2014
Creator: Berhe, Seare Ahferom
System: The UNT Digital Library
Synthesis of Novel Organic Chromophores and Their Characterization (open access)

Synthesis of Novel Organic Chromophores and Their Characterization

Nonlinear organic liquids that exhibit two-photon absorption (TPA) function as good optical limiters for sensor protection from laser pulses. L34 (4-butyl-4'-propyl-diphenylethyne) is a liquid organic compound exhibiting nonlinear optical absorption. A thiol- derivatized analog of L34 (“thiol-L34”) was prepared to bind the molecules to the surface of gold nanoparticles. Surface binding is necessary to investigate synergy between nonlinear optical absorption of gold nanoparticles and thiol-L34. Thiol-L34 was prepared in a six-step organic synthesis starting from 3-(4-bromophenyl) propionic acid. Au nanoparticles with <15 nm diameter have been prepared and sensitized with the thiol-L34 compound for assessment of their nonlinear optical behavior. Diazolylmethenes a class of metal-coordinating dyes that are similar to dipyrrins with some substitutions of nitrogen atoms in place of carbon atoms. Modification in the framework of dipyrrinoid dyes via this replacement of nitrogen for carbon atoms may lead to compounds that serve as effective agents for bioimaging and/or photodynamic therapy. Several routes to the synthesis of di-(1,2,3)-triazolylmethenes, di-(1,2,4)-triazolylmethenes, and ditetrazolylmethenes are presented.
Date: December 2014
Creator: Pokharel, Sundari D.
System: The UNT Digital Library
Kinetic Studies on C‐h Bond Activation in the Reaction of Triosmium Clusters with Diphosphine and Amidine Ligands (open access)

Kinetic Studies on C‐h Bond Activation in the Reaction of Triosmium Clusters with Diphosphine and Amidine Ligands

The reaction of 1-(diphenylphosphino)-2-(diphenylphosphito)benzene (PP*) and Os3(CO)10(ACN) has been investigated. A combined experimental and computational study on the isomerization of 1,2-Os3(CO)10[μ-1,2-Ph2P(C6H4)P(OPh)2] (A) and 1,1-Os3(CO)10[μ-1,2-Ph2P(C6H4)P(OPh)2] (B) and reversible ortho-metalation exhibited by the triosmium cluster B are reported. The subsequent conversion of cluster B to the hydrido cluster HOs3(CO)9[μ-1,2-PhP(C6H4-η1)C6H4P(OPh)2] (E) and the benzyne-substituted cluster HOs3(CO)8(µ3-C6H4)[μ-1,2-PhP(C6H4)P(OPh)2] (N) has been established. All of these new clusters have been isolated and fully characterized in solution by IR and NMR spectroscopy; in addition, X-ray diffraction analyses have been performed on the clusters A, B, J, and N. The ortho-metalation reaction that gives cluster E is shown to be reversible, and the mechanism has been probed using selectively deuterated PP* isotopomers. Kinetic and thermodynamic isotope data, in conjunction with DFT calculations, are presented that support the existence of an intermediate unsaturated cluster in the ortho-metalation reaction. Due to interest in the coordination chemistry of formamidines, the non-symmetric amidine ligands PhNC(Me)NHPri, PhNC(Et)NHPri, and (2,4,6-Me3C6H2)NC(Me)NHPri, have been synthesized, and their reaction with Os3(CO)10(MeCN)2 has been investigated. Of the twelve new clusters prepared in section, seven have been structurally characterized by X-ray crystallography.
Date: December 2014
Creator: Yang, Li
System: The UNT Digital Library