10 Matching Results

Results open in a new window/tab.

Thermally Stimulated Depolarization Current Evaluation of Molding Compounds (open access)

Thermally Stimulated Depolarization Current Evaluation of Molding Compounds

TSDC (thermally stimulated depolarization current) is one of the most important and popular technique for investigating electret materials. TSDC technique can indicate the magnitude of polarization and depolarization, relaxation time, charge-storage, glass transition, and activation energy. To fully investigate polarization and relaxation for pure epoxy and filled epoxy materials, a TSDC system was built and verified by the research. The article describes the building processes and verification of the TSDC system. TSDC, TSPC, and TWC tests data for epoxy and filled epoxy samples are presented in the article. To compare TSDC technique with other related techniques, DEA (dielectric analysis), DMA (dynamic mechanical analysis), and DSC (differential scanning calorimetry) tests are introduced.
Date: May 2014
Creator: Zhao, Shunli
System: The UNT Digital Library
Source Apportionment Analysis of Measured Volatile Organic Compounds in Corpus Christi, Texas (open access)

Source Apportionment Analysis of Measured Volatile Organic Compounds in Corpus Christi, Texas

Corpus Christi among of the largest industrialized coastal urban areas in Texas. The strategic location of the city along the Gulf of Mexico allows for many important industries and an international business to be located. The cluster of industries and businesses in the region contribute to the air pollution from emissions that are harmful to the environment and to the people living in and visiting the area. Volatile organic compounds (VOC) constitute an important class of pollutants measured in the area. The automated gas chromatography (Auto GC) data was collected from Texas Commission of Environmental Quality (TCEQ) and source apportionment analysis was conducted on this data to identify key sources of VOC affecting this study region. EPA PMF 3.0 was employed in this sources apportionment study of measured VOC concentration during 2005 - 2012 in Corpus Christi, Texas. The study identified nine optimal factors (Source) that could explain the concentration of VOC at two urbane monitoring sites in the study region. Natural gas was found to be the largest contributor of VOC in the area, followed by gasoline and vehicular exhaust. Diesel was the third highest contributor with emissions from manufacturing and combustion processes. Refineries gases and evaporative fugitive emissions …
Date: May 2014
Creator: Abood, Ahmed T.
System: The UNT Digital Library
Electrodepostion of Iron Oxide on Steel Fiber for Improved Pullout Strength in Concrete (open access)

Electrodepostion of Iron Oxide on Steel Fiber for Improved Pullout Strength in Concrete

Fiber-reinforced concrete (FRC) is nowadays extensively used in civil engineering throughout the world due to the composites of FRC can improve the toughness, flexural strength, tensile strength, and impact strength as well as the failure mode of the concrete. It is an easy crazed material compared to others materials in civil engineering. Concrete, like glass, is brittle, and hence has a low tensile strength and shear capacity. At present, there are different materials that have been employed to reinforce concrete. In our experiment, nanostructures iron oxide was prepared by electrodepostion in an electrolyte containing 0.2 mol/L sodium acetate (CH3COONa), 0.01 mol/L sodium sulfate (Na2SO4) and 0.01 mol/L ammonium ferrous sulfate (NH4)2Fe(SO4)2.6H2O under magnetic stirring. The resulted showed that pristine Fe2O3 particles, Fe2O3 nanorods and nanosheets were synthesized under current intensity of 1, 3, 5 mA, respectively. And the pull-out tests were performed by Autograph AGS-X Series. It is discovering that the load force potential of nanostructure fibers is almost 2 times as strong as the control sample.
Date: August 2014
Creator: Liu, Chuangwei
System: The UNT Digital Library
High-Density Polyethylene/Peanut Shell Biocomposites (open access)

High-Density Polyethylene/Peanut Shell Biocomposites

A recent trend in the development of renewable and biodegradable materials has led to the development of composites from renewal sources such as natural fibers. This agricultural activity generates a large amount of waste in the form of peanut shells. The motivation for this research is based on the utilization of peanut shells as a viable source for the manufacture of biocomposites. High-density polyethylene (HDPE) is a plastic largely used in the industry due to its durability, high strength to density ratio, and thermal stability. This research focuses in the mechanical and thermal properties of HDPE/peanut shell composites of different qualities and compositions. The samples obtained were subjected to dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and mechanical tensile strength tests. TO prepare the samples for analysis, the peanut shells were separated into different mesh sizes and then mixed with HDPE at different concentrations. The results showed that samples with fiber size number 10 exhibited superior strength modulus of 1.65 GPa versus results for HDPE alone at 1.32 GPa. The analysis from the previous experiments helped to determine that the fiber size number 10 at 5%wt. ratio in HDPE provides the most optimal mechanical and thermal results. From tensile …
Date: May 2014
Creator: Londoño Ceballos, Mauricio
System: The UNT Digital Library
The Influence of Surface Roughness and Its Geometry on Dynamic Behavior of Water Droplets (open access)

The Influence of Surface Roughness and Its Geometry on Dynamic Behavior of Water Droplets

In this study the author reports the effects of surface roughness on dynamic behavior of water droplets on different types of rough structures. First, the influence of roughness geometry on the Wenzel/ Cassie-Baxter transition of water droplets on one-tier (solid substrates with Si micropillars) surfaces is studied (Chapter 3). In order to address distinct wetting behaviors of the advancing and receding motions, the author investigates the Wenzel/ Cassie-Baxter transition of water droplets on one-tier surfaces over a wide range of contact line velocities and droplet volumes in both advancing and receding movements. The discussions are strengthened by experimental results. According to the author’s analysis, the advancing contact zone tends to follow the Cassie-Baxter behavior for a wider range of geometric ratios than the receding contact zone. Physical phenomena such as advancing contact line rolling mechanism and the pinning of the receding contact line are introduced to justify distinct transition points of the advancing and receding movements respectively. Based on the analysis provided in Chapter 3, the author experimentally investigates the contact line fluctuations and contact line friction coefficients of water droplets on smooth, one-tier, and two-tier (with carbon nanotubes (CNTs) grown on Si micropillars) surfaces in Chapters 4 and 5. …
Date: December 2014
Creator: Sadeghpour, Nima.
System: The UNT Digital Library
Microchannel Radiator: an Investigation of Microchannel Technology with Applications in Automotive Radiator Heat Exchangers (open access)

Microchannel Radiator: an Investigation of Microchannel Technology with Applications in Automotive Radiator Heat Exchangers

Microchannels have been used in electronics cooling and in air conditioning applications as condensers. Little study has been made in the application of microchannels in automotive heat exchangers, particularly the radiator. The presented research captures the need for the design improvement of radiator heat exchangers in heavy-duty vehicles in order to reduce aerodynamic drag and improve fuel economy. A method for analyzing an existing radiator is set forth including the needed parameters for effective comparisons of alternative designs. An investigation of microchannels was presented and it was determined that microchannels can improve the overall heat transfer of a radiator but this alone will not decrease the dimensions of the radiator. Investigations into improving the air-side heat transfer were considered and an improved fin design was found which allows a reduction in frontal area while maintaining heat transfer. The overall heat transfer of the design was improved from the original design by 7% well as 52% decrease in frontal area but at the cost of 300% increase in auxiliary power. The energy saved by a reduction in frontal area is not substantial enough to justify the increase of auxiliary power. The findings were verified through a computational fluid dynamic model to …
Date: August 2014
Creator: Checketts, Gus Thomas
System: The UNT Digital Library
Electromagnetic Shielding Properties of Iron Oxide Impregnated Kenaf Bast Fiberboard (open access)

Electromagnetic Shielding Properties of Iron Oxide Impregnated Kenaf Bast Fiberboard

The electromagnetic shielding effectiveness of kenaf bast fiber based composites with different iron oxide impregnation levels was investigated. The kenaf fibers were retted to remove the lignin and extractives from the pores in fibers, and then magnetized. Using the unsaturated polyester and the magnetized fibers, kenaf fiber based composites were manufactured by compression molding process. The transmission energies of the composites were characterized when the composite samples were exposed under the irradiation of electromagnetic (EM) wave with a changing frequency from 9 GHz to 11 GHz. Using the scanning electron microscope (SEM), the iron oxide nanoparticles were observed on the surfaces and inside the micropore structures of single fibers. The SEM images revealed that the composite’s EM shielding effectiveness was increased due to the adhesion of the iron oxide crystals to the kenaf fiber surfaces. As the Fe content increased from 0% to 6.8%, 15.9% and 18.0%, the total surface free energy of kenaf fibers with magnetizing treat increased from 44.77 mJ/m2 to 46.07 mJ/m2, 48.78 mJ/m2 and 53.02 mJ/m2, respectively, while the modulus of elasticity (MOE) reduced from 2,875 MPa to 2,729 MPa, 2,487 MPa and 2,007 MPa, respectively. Meanwhile, the shielding effectiveness was increased from 30-50% to 60-70%, …
Date: December 2014
Creator: Ding, Zhiguang
System: The UNT Digital Library
Development of a Cost Effective Wireless Sensor System for Indoor Air Quality Monitoring Applications (open access)

Development of a Cost Effective Wireless Sensor System for Indoor Air Quality Monitoring Applications

Poor air quality can greatly affect the public health. Research studies indicate that indoor air can be more polluted than the outdoor air. An indoor air quality monitoring system will help to create an awareness of the quality of air inside which will eventually help in improving it. The objective of this research is to develop a low cost wireless sensor system for indoor air quality monitoring. The major cost reduction of the system is achieved by using low priced sensors. Interface circuits had to be designed to make these sensors more accurate. The system is capable of measuring carbon dioxide, carbon monoxide, ozone, temperature, humidity and volatile organic compounds. The prototype sensor node modules were developed. The sensor nodes were the connected together by Zigbee network. The nodes were developed in such a way that it is compact in size and wireless connection of sensor nodes enable to collect air quality data from multiple locations simultaneously. The collected data was stored in a computer. We employed linear least-square approach for the calibration of each sensor to derive a conversion formula for converting the sensor readings to engineering units. The system was tested with different pollutants and data collected was …
Date: May 2014
Creator: Abraham, Sherin
System: The UNT Digital Library
Optimization of Superhydrophobic Surfaces to Maintain Continuous Dropwise Condensation (open access)

Optimization of Superhydrophobic Surfaces to Maintain Continuous Dropwise Condensation

In the past decade, the condensation on superhydrophobic surfaces has been investigated abundantly to achieve dropwise condensation. There is not a specific approach in choosing the size of the roughness of the superhydrophobic surfaces and it was mostly selected arbitrarily to investigate the behavior of condensates on these surfaces. In this research, we are optimizing the size of the roughness of the superhydrophobic surface in order to achieve dropwise condensation. By minimizing the resistances toward the transition of the tails of droplets from the cavities of the roughness to the top of the roughness, the size of the roughness is optimized. It is shown that by decreasing the size of the roughness of the superhydrophobic surface, the resistances toward the transition of the tails of droplets from Wenzel state to Cassie state decrease and consequently dropwise condensation becomes more likely.
Date: May 2014
Creator: Vandadi, Aref
System: The UNT Digital Library
Sustainable Energy Solutions for Water Purification Applications: Municipal and Industrial Case Studies (open access)

Sustainable Energy Solutions for Water Purification Applications: Municipal and Industrial Case Studies

In several areas around the world, clean water is a precious asset that at anytime, and mainly due to circumstances of weather and climate, can become scarce. Mainly in the dry and remote places, people suffer with lack of water. A solution for this suffering can be a water desalination system, which makes water potable and usable for industry. That solution inherently, brings the problem of power requirement, which is sometimes arduous to accomplish in such remote areas of difficult access and long distances to overcome to build the infrastructure required to operate an electric power plant. Texas and the USA also face this scenario for many regions, for which the government has been creating some programs and driving forward incentives, looking for solutions to support water desalination. Water desalination has future applications for municipalities water-consuming or for arid and remote regions, as well as for industries that rely on heavy water usage, such as natural gas drilling operations, for which millions of gallons are trucked overland to the site and also hauled away afterwards, when the waste water produced must be treated. This thesis created the concept of autonomy for water desalination plants replacing the actual power supply from …
Date: May 2014
Creator: Mira, Sebastião Bittencourt de
System: The UNT Digital Library