Second Line of Defense, Megaports Initiative, Operational Testing and Evaluation Plan, Port of Lazaro Cardenas, Mexico (open access)

Second Line of Defense, Megaports Initiative, Operational Testing and Evaluation Plan, Port of Lazaro Cardenas, Mexico

The purpose of the Operational Testing and Evaluation (OT&E) phases of the project is to prepare for turnover of the Megaports System supplied by U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)—located at the Export Lanes of the Port of Lazaro Cardenas, Mexico—to the Government of Mexico (GOM).
Date: May 30, 2012
Creator: Hughes, Jamie D.
Object Type: Report
System: The UNT Digital Library
Science and Technology Review, July/August 2012 (open access)

Science and Technology Review, July/August 2012

This month's issue has the following articles: (1) Energetic Materials Research Finds an Enduring Home and Mission - Commentary by Bruce T. Goodwin; (2) A Home for Energetic Materials and Their Experts - The Energetic Materials Center has become the National Nuclear Security Administration's go-to facility for high explosives formulation, testing, and expertise; (3) A Spectra-Tacular Sight - Scientists use spectrographic techniques and a high-powered telescope to study the atmospheric composition of exoplanets; (4) Seismic Data Pinpoint Fractures for Geothermal Energy - Livermore researchers are developing advanced microseismic analysis techniques to understand what happens beneath Earth's surface, where hot rock can provide an energy source; and (5) Employees Keep Up with the Times - The Laboratory's Education Assistance Program helps its workforce stay productive, skilled, and dynamic.
Date: May 30, 2012
Creator: Poyneer, L A
Object Type: Report
System: The UNT Digital Library
DESTRUCTIVE EXAMINATION OF SHIPPING PACKAGE 9975-03431 (open access)

DESTRUCTIVE EXAMINATION OF SHIPPING PACKAGE 9975-03431

Destructive and non-destructive examinations have been performed on specified components of shipping package 9975-03431. For those attributes that were also measured during the field surveillance, no significant changes were observed. All observations and test results met identified criteria, or were collected for information and trending purposes. Except for modest corrosion of the lead shield (which is typical of these packages following several years service), no evidence of a degraded condition was found in this package. The Savannah River Site (SRS) stores packages containing plutonium (Pu) materials in the KArea Complex (KAC). The Pu materials are packaged per the DOE 3013 Standard and stored within Model 9975 shipping packages in KAC. The KAC facility DSA (Document Safety Analysis) credits the Model 9975 package to perform several safety functions, including criticality prevention, impact resistance, containment, and fire resistance to ensure the plutonium materials remain in a safe configuration during normal and accident conditions. The Model 9975 package is expected to perform its safety function for at least 12 years from initial packaging. The DSA recognizes the degradation potential for the materials of package construction over time in the KAC storage environment and requires an assessment of materials performance to validate the assumptions …
Date: May 30, 2012
Creator: Daugherty, W.
Object Type: Report
System: The UNT Digital Library
The PNNL Lab Homes Experimental Plan, FY12−FY15 (open access)

The PNNL Lab Homes Experimental Plan, FY12−FY15

The PNNL lab homes (http://labhomes.pnnl.gov/ ) are two manufactured homes recently installed immediately south of the 6th Street Warehouse on the PNNL Richland, WA campus that will serve as a project test bed for DOE, PNNL and its research partners who aim to achieve highly energy efficient and grid-responsive homes. The PNNL Lab Homes project is the first of its kind in the Pacific Northwest region. The Energy & Environment Directorate at PNNL, working with multiple sponsors, will use the identical 1,500 square-foot homes for experiments focused on reducing energy use and peak demand. Research and demonstration primarily will focus on retrofit technologies, and the homes will offer a unique, side-by-side ability to test and compare new ideas and approaches that are applicable to site-built as well as manufactured homes. The test plan has the following objectives: • To define a retrofit solution packages for moderate to cold climates that can be cost effectively deployed in the Pacific NW to save 50% of the energy needs of a typical home while enhancing the comfort and indoor air quality. The retrofit strategies would also lower the peak demands on the grid. • To leverage the unique opportunity in the lab homes …
Date: May 30, 2012
Creator: Widder, Sarah H.; Parker, Graham B. & Baechler, Michael C.
Object Type: Report
System: The UNT Digital Library
Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2 (open access)

Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction …
Date: May 30, 2012
Creator: Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei & Sun, Xin
Object Type: Report
System: The UNT Digital Library
Impact Of Melter Internal Design On Off-Gas Flammability (open access)

Impact Of Melter Internal Design On Off-Gas Flammability

The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good.
Date: May 30, 2012
Creator: Choi, A. S. & Lee, S. Y.
Object Type: Report
System: The UNT Digital Library
Extension of the Bayesloc Multiple-Event Location Algorithm to Include Differential Travel Time Measurements (open access)

Extension of the Bayesloc Multiple-Event Location Algorithm to Include Differential Travel Time Measurements

None
Date: May 30, 2012
Creator: Myers, S C & Johannesson, G
Object Type: Article
System: The UNT Digital Library
Reversible Electron Beam Heating for Suppression of Micro bunching Instabilities at Free-Electron Lasers (open access)

Reversible Electron Beam Heating for Suppression of Micro bunching Instabilities at Free-Electron Lasers

The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.
Date: May 30, 2012
Creator: Behrens, Christopher; Huang, Zhirong & Xiang, Dao
Object Type: Article
System: The UNT Digital Library
TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR (open access)

TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.
Date: May 30, 2012
Creator: Hirshfield, Jay L.
Object Type: Report
System: The UNT Digital Library
Optimization of the Dynamic Aperture for SPEAR3 Low-Emittance Upgrade (open access)

Optimization of the Dynamic Aperture for SPEAR3 Low-Emittance Upgrade

A low emittance upgrade is planned for SPEAR3. As the first phase, the emittance is reduced from 10nm to 7nm without additional magnets. A further upgrade with even lower emittance will require a damping wiggler. There is a smaller dynamic aperture for the lower emittance optics due to a stronger nonlinearity. Elegant based Multi-Objective Genetic Algorithm (MOGA) is used to maximize the dynamic aperture. Both the dynamic aperture and beam lifetime are optimized simultaneously. Various configurations of the sextupole magnets have been studied in order to find the best configuration. The betatron tune also can be optimized to minimize resonance effects. The optimized dynamic aperture increases more than 15% from the nominal case and the lifetime increases from 14 hours to 17 hours. It is important that the increase of the dynamic aperture is mainly in the beam injection direction. Therefore the injection efficiency will benefit from this improvement.
Date: May 30, 2012
Creator: Wang, Lanfa; Huang, Xiaobiao; Nosochkov, Yuri; Safranek, James A. & Borland, Michael
Object Type: Article
System: The UNT Digital Library
ONSITE TRANSPORTATION AUTHORIZATION CHALLENGES AT THE SAVANNAH RIVER SITE (open access)

ONSITE TRANSPORTATION AUTHORIZATION CHALLENGES AT THE SAVANNAH RIVER SITE

Prior to 2008, transfers of radioactive material within the Savannah River Site (SRS) boundary, referred to as onsite transfers, were authorized by Transportation Safety Basis (TSB) documents that only required approval by the SRS contractor. This practice was in accordance with the existing SRS Transportation Safety Document (TSD). In 2008 the Department of Energy Savannah River Field Office (DOE-SR) requested that the SRS TSD be revised to require DOE-SR approval of all Transportation Safety Basis (TSB) documents. As a result, the primary SRS contractor embarked on a multi-year campaign to consolidate old or generate new TSB documents and obtain DOE-SR approval for each. This paper focuses on the challenges incurred during the rewriting or writing of and obtaining DOE-SR approval of all Savannah River Site Onsite Transportation Safety Basis documents.
Date: May 30, 2012
Creator: Watkins, R.; Loftin, B.; Hoang, D. & Maxted, M.
Object Type: Article
System: The UNT Digital Library
Beam Ion Instability in ILC Damping Ring with Multi-Gas Species (open access)

Beam Ion Instability in ILC Damping Ring with Multi-Gas Species

Ion induced beam instability is one critical issue for the electron damping ring of the International Linear Collider (ILC) due to its ultra small emittance of 2 pm. The beam ion instability with various beam filling patterns for the latest lattice DTC02 is studied using PIC code. The code has been benchmarked with SPEAR3 experimental data and there is a good agreement between the simulation and observations. It uses the optics from MAD and can handle arbitrary beam filling pattern and vacuum. Different from previous studies, multi-gas species and exact beam filling patterns have been modeled simultaneously in the study. This feature makes the study more realistic. Analyses have been done to compare with the simulations.
Date: May 30, 2012
Creator: Wang, Lanfa & Pivi, Mauro
Object Type: Article
System: The UNT Digital Library