A 14 MeV Fusion Neutron Source for Material and Blanket Development and Fission Fuel Production (open access)

A 14 MeV Fusion Neutron Source for Material and Blanket Development and Fission Fuel Production

None
Date: July 30, 2012
Creator: Simonen, T. C.; Moir, R. W.; Molvik, A. W. & Ryutov, D. D.
Object Type: Article
System: The UNT Digital Library
2011 Annual Health Physics Report for the HEU transparency Program (open access)

2011 Annual Health Physics Report for the HEU transparency Program

During the 2008 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. They also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2008, there were 158 person-trips that required dose monitoring of the U.S. monitors. Of the 158 person-trips, 148 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 6 monitoring visits by TMO monitors to facilities other than UEIE and 8 to UEIE itself. There were three monitoring visits (source changes) that were back-to-back with a total of 24 monitors. LLNL's Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2008, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency now has thirteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.
Date: April 30, 2012
Creator: Radev, R.
Object Type: Report
System: The UNT Digital Library
Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion (open access)

Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low …
Date: September 30, 2012
Creator: Baek, J.; Diamond, D.; Cuadra, A.; Hanson, A. L.; Cheng, L. Y. & Brown, N. R.
Object Type: Report
System: The UNT Digital Library
Advanced Battery Manufacturing (VA) (open access)

Advanced Battery Manufacturing (VA)

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in …
Date: September 30, 2012
Creator: Stratton, Jeremy
Object Type: Report
System: The UNT Digital Library
Advanced Boost System Developing for High EGR Applications (open access)

Advanced Boost System Developing for High EGR Applications

To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.
Date: September 30, 2012
Creator: Sun, Harold
Object Type: Report
System: The UNT Digital Library
Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status (open access)

Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the …
Date: April 30, 2012
Creator: Qualls, A.L.; Cetiner, M.S. & Wilson, T.L., Jr.
Object Type: Report
System: The UNT Digital Library
Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations (open access)

Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations

There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.
Date: September 30, 2012
Creator: Bruno, Mike; Detwiler, Russell L.; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia et al.
Object Type: Article
System: The UNT Digital Library
Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection (open access)

Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector …
Date: April 30, 2012
Creator: Grant, Marion B.
Object Type: Report
System: The UNT Digital Library
ADVANCES IN HEXAVALENT CHROMIUM REMOVAL AT HANFORD (open access)

ADVANCES IN HEXAVALENT CHROMIUM REMOVAL AT HANFORD

At the Hanford Site, chromium was used as a corrosion inhibitor in the reactor cooling water and was introduced into the groundwater as a result of planned and unplanned discharges from reactors during plutonium production since 1944. Beginning in 1995, groundwater treatment methods were evaluated leading to the use of pump and treat facilities with ion exchange using Dowex 21 K, a regenerable strong base anion exchange resin. This required regeneration of the resin, which is currently performed offsite. Resin was installed in a 4 vessel train, with resin removal required from the lead vessel approximately once a month. In 2007, there were 8 trains (32 vessels) in operation. In 2008, DOE recognized that regulatory agreements would require significant expansion in the groundwater chromium treatment capacity. Previous experience from one of the DOE project managers led to identification of a possible alternative resin, and the contractor was requested to evaluate alternative resins for both cost and programmatic risk reductions. Testing was performed onsite in 2009 and 2010, using a variety of potential resins in two separate facilities with groundwater from specific remediation sites to demonstrate resin performance in the specific groundwater chemistry at each site. The testing demonstrated that a …
Date: January 30, 2012
Creator: Neshem, D. O. & Riddelle, J.
Object Type: Article
System: The UNT Digital Library
[Aerial Photo of a Site in New York] (open access)

[Aerial Photo of a Site in New York]

This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler County’s 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.
Date: November 30, 2012
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Alternative Fuel for Portland Cement Processing (open access)

Alternative Fuel for Portland Cement Processing

The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, …
Date: June 30, 2012
Creator: Schindler, Anton K.; Duke, Steve R.; Burch, Thomas E.; Davis, Edward W.; Zee, Ralph H.; Bransby, David I. et al.
Object Type: Report
System: The UNT Digital Library
Analysis of Hanford-based Options for Sustainable DOE Facilities on the West Coast (open access)

Analysis of Hanford-based Options for Sustainable DOE Facilities on the West Coast

Large-scale conventional energy projects result in lower costs of energy (COE). This is true for most renewable energy projects as well. The Office of Science is interested in its facilities meeting the renewable energy mandates set by Congress and the Administration. Those facilities on the west coast include a cluster in the Bay Area of California and at Hanford in central Washington State. Land constraints at the California facilities do not permit large scale projects. The Hanford Reservation has land and solar insolation available for a large scale solar project as well as access to a regional transmission system that can provide power to facilities in California. The premise of this study is that a large-scale solar project at Hanford may be able to provide renewable energy sufficient to meet the needs of select Office of Science facilities on the west coast at a COE that is competitive with costs in California despite the lower solar insolation values at Hanford. The study concludes that although the cost of solar projects continues to decline, estimated costs for a large-scale project at Hanford are still not competitive with avoided power costs for Office of Science facilities on the west coast. Further, although …
Date: June 30, 2012
Creator: Warwick, William M.
Object Type: Report
System: The UNT Digital Library
Analysis of Microbial Activity Under a Supercritical CO{sub 2} Atmosphere (open access)

Analysis of Microbial Activity Under a Supercritical CO{sub 2} Atmosphere

Because the extent and impact of microbial activity in deep saline aquifers during geologic sequestration is unknown, the objectives of this proposal were to: (1) characterize the growth requirements and optima of a biofilm-producing supercritical CO{sub 2}-tolerant microbial consortium (labeled MIT0212) isolated from hydrocarbons recovered from the Frio Ridge, TX carbon sequestration site; (2) evaluate the ability of this consortium to grow under simulated reservoir conditions associated with supercritical CO{sub 2} injection; (3) isolate and characterize individual microbial strains from this consortium; and (4) investigate the mechanisms of supercritical CO{sub 2} tolerance in isolated strains and the consortium through genome-enabled studies. Molecular analysis of genetic diversity in the consortium MIT0212 revealed a predominance of sequences closely related to species of the spore-forming genus Bacillus. Strain MIT0214 was isolated from this consortium and characterized by physiological profiling and genomic analysis. We have shown that the strain MIT0214 is an aerobic spore-former and capable of facultative anaerobic growth under both reducing N{sub 2} and CO{sub 2} atmospheres by fermentation and possibly anaerobic respiration. Strain MIT0214 is best adapted to anaerobic growth at pressures of 1 atm but is able to growth at elevated pressures After 1 week growth was observed at pressures …
Date: November 30, 2012
Creator: Thompson, Janelle
Object Type: Report
System: The UNT Digital Library
Analysis of Potential Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO(sub 2} (open access)

Analysis of Potential Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO(sub 2}

We used a multifaceted approach to investigate the nature of caprocks above, and the interface between, reservoir-­‐quality rocks that might serve as targets for carbon storage. Fieldwork in southeastern Utah examined the regional-­‐ to m-­‐scale nature of faults and fractures across the sedimentiological interfaces. We also used microscopic analyses and mechanical modeling to examine the question as to how the contacts between units interact, and how fractures may allow fluids to move from reservoirs to caprock. Regional-­‐scale analyses using ASTER data enabled us to identify location of alteration, which led to site-­‐specific studies of deformation and fluid flow. In the Jurassic Carmel Formation, a seal for the Navajo Sandstone, we evaluated mesoscale variability in fracture density and morphology and variability in elastic moduli in the Jurassic Carmel Formation, a proposed seal to the underlying Navajo Sandstone for CO{sub 2} geosequestration. By combining mechano-­‐stratigraphic outcrop observations with elastic moduli derived from wireline log data, we characterize the variability in fracture pattern and morphology with the observed variability in rock strength within this heterolithic top seal. Outcrop inventories of discontinuities show fracture densities decrease as bed thickness increases and fracture propagation morphology across lithologic interfaces vary with changing interface type. Dynamic elastic …
Date: November 30, 2012
Creator: Evans, James
Object Type: Report
System: The UNT Digital Library
Analytical Approaches Towards Understanding Structure-Property Relationships in End-Linked Model PDMS Networks (open access)

Analytical Approaches Towards Understanding Structure-Property Relationships in End-Linked Model PDMS Networks

None
Date: August 30, 2012
Creator: Lewicki, J P; Albo, R F; Alviso, C T; Ashmore, M; Harley, S J; Finnie, J A et al.
Object Type: Article
System: The UNT Digital Library
Analytical-Numerical Sharp-Interface Model of CO2 Sequestration and Application to Illinois Basin, 2012, December (open access)

Analytical-Numerical Sharp-Interface Model of CO2 Sequestration and Application to Illinois Basin, 2012, December

This report talks about Analytical-Numerical Sharp-Interface Model of CO2 Sequestration and Application to Illinois Basin.
Date: September 30, 2012
Creator: Person, Mark
Object Type: Report
System: The UNT Digital Library
ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLES POURED AUGUST 29, 2012 (open access)

ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLES POURED AUGUST 29, 2012

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Samples poured 8/29/12 were received on 9/20/2012 and analyzed. The average total density of each of the samples measured by the ASTM method C 642 was within the lower bound of 1.88 g/cm{sup 3}. The average partial hydrogen density of samples 8.6.1, 8.7.1, and 8.5.3 as measured using method ASTM E 1311 met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density of each sample met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method. The average partial hydrogen density of samples 8.5.1, 8.6.3, and 8.7.3 did not meet the lower bound. The samples, as received, were not wrapped in a moist towel as previous samples and appeared to be somewhat drier. This may explain the lower hydrogen partial density with respect to previous samples.
Date: October 30, 2012
Creator: Cozzi, A.; Best, D. & Reigel, M.
Object Type: Report
System: The UNT Digital Library
Application of Pulse Spark Discharges for Scale Prevention and Continuous Filtration Methods in Coal-Fired Power Plant (open access)

Application of Pulse Spark Discharges for Scale Prevention and Continuous Filtration Methods in Coal-Fired Power Plant

The overall objective of the present work was to develop a new scale-prevention technology by continuously precipitating and removing dissolved mineral ions (such as calcium and magnesium) in cooling water while the COC could be doubled from the present standard value of 3.5. The hypothesis of the present study was that if we could successfully precipitate and remove the excess calcium ions in cooling water, we could prevent condenser-tube fouling and at the same time double the COC. The approach in the study was to utilize pulse spark discharges directly in water to precipitate dissolved mineral ions in recirculating cooling water into relatively large suspended particles, which could be removed by a self-cleaning filter. The present study began with a basic scientific research to better understand the mechanism of pulse spark discharges in water and conducted a series of validation experiments using hard water in a laboratory cooling tower. Task 1 of the present work was to demonstrate if the spark discharge could precipitate the mineral ions in water. Task 2 was to demonstrate if the selfcleaning filter could continuously remove these precipitated calcium particles such that the blowdown could be eliminated or significantly reduced. Task 3 was to demonstrate …
Date: June 30, 2012
Creator: Cho, Young & Fridman, Alexander
Object Type: Report
System: The UNT Digital Library
An arbuscular mycorrhizal fungus modifies the soil microbial community and nitrogen cycling during litter decomposition (open access)

An arbuscular mycorrhizal fungus modifies the soil microbial community and nitrogen cycling during litter decomposition

None
Date: April 30, 2012
Creator: Nuccio, E E; Hodge, A; Pett-Ridge, J; Herman, D J; Weber, P & Firestone, M K
Object Type: Article
System: The UNT Digital Library
ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration (open access)

ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. …
Date: September 30, 2012
Creator: Gao, David Wenzhong
Object Type: Report
System: The UNT Digital Library
Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments (open access)

Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the …
Date: September 30, 2012
Creator: Valentine, David
Object Type: Report
System: The UNT Digital Library
Beam Ion Instability in ILC Damping Ring with Multi-Gas Species (open access)

Beam Ion Instability in ILC Damping Ring with Multi-Gas Species

Ion induced beam instability is one critical issue for the electron damping ring of the International Linear Collider (ILC) due to its ultra small emittance of 2 pm. The beam ion instability with various beam filling patterns for the latest lattice DTC02 is studied using PIC code. The code has been benchmarked with SPEAR3 experimental data and there is a good agreement between the simulation and observations. It uses the optics from MAD and can handle arbitrary beam filling pattern and vacuum. Different from previous studies, multi-gas species and exact beam filling patterns have been modeled simultaneously in the study. This feature makes the study more realistic. Analyses have been done to compare with the simulations.
Date: May 30, 2012
Creator: Wang, Lanfa & Pivi, Mauro
Object Type: Article
System: The UNT Digital Library
Boron-10 Lined Proportional Counter Model Validation (open access)

Boron-10 Lined Proportional Counter Model Validation

The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project “Coincidence Counting With Boron-Based Alternative Neutron Detection Technology” at Pacific Northwest National Laboratory (PNNL) for the development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube-based alternative system in the configuration of a coincidence counter. This report discusses the validation studies performed to establish the degree of accuracy of the computer modeling methods current used to simulate the response of boron-lined tubes. This is the precursor to developing models for the uranium neutron coincidence collar under Task 2 of this project.
Date: June 30, 2012
Creator: Lintereur, Azaree T.; Siciliano, Edward R. & Kouzes, Richard T.
Object Type: Report
System: The UNT Digital Library
Building A Universal Nuclear Energy Density Functional (UNEDF) (open access)

Building A Universal Nuclear Energy Density Functional (UNEDF)

During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, …
Date: September 30, 2012
Creator: Carlson, Joe, Los Alamos National Laboratory, Los Alamos, NM; Furnstahl, Dick, Ohio State University, Columbus, OH; Horoi, Mihai, Central Michigan University, Mount Pleasant, MI; Lusk, Rusty, Argonne National Laboratory, Argonne, IL; Nazarewicz, Witek, University of Tennessee, Knoxville, TN; Ng, Esmond, Berkeley National Laboratory, Berkeley, CA et al.
Object Type: Report
System: The UNT Digital Library