Final Technical Report: Grain Boundary Complexions and Transitions in Doped Silicon (open access)

Final Technical Report: Grain Boundary Complexions and Transitions in Doped Silicon

This four-year research project has advanced the fundamental knowledge of grain boundary (GB) complexions (i.e., "two-dimensional interfacial phases") and associated GB "phase" transitions in several grounds. First, a bilayer interfacial phase, which had been directly observed by microscopy only in complex ceramic systems in prior studies, has been identified in simpler systems such as Au-doped Si and Bi-doped Ni in this study, where the interpretations of the their formation mechanisms and microscopic images are less equivocal. Second, convincing evidence for the existence of a first-order GB transition from a nominally "clean" GB to a bilayer adsorption interfacial phase has been revealed for Au-doped Si; the confirmation of the first-order nature of interfacial transitions at GBs, which was rare in prior studies, is scientifically significant and technologically important. Third, the bilayer interfacial phase discovered in Bi-doped Ni has been found to be the cause of the mysterious liquid metal embrittlement phenomenon in this system; the exact atomic level mechanism of this phenomenon has puzzled the materials and physics communities for over a century. Finally, significant advancements have been made to establish phenomenological thermodynamic models for GB complexions and transitions. Since GB complexions can control the transport, mechanical and physical properties of …
Date: October 15, 2012
Creator: Luo, Jian
Object Type: Report
System: The UNT Digital Library
Long Term Thermal Stability In Air Of Ionic Liquid Based Alternative Heat Transfer Fluids For Clean Energy Production (open access)

Long Term Thermal Stability In Air Of Ionic Liquid Based Alternative Heat Transfer Fluids For Clean Energy Production

The purpose of this study was to investigate the effect of long-term aging on the thermal stability and chemical structure of seven different ILs so as to explore their suitability for use as a heat transfer fluid. This was accomplished by heating the ILs for 15 weeks at 200�C in an oxidizing environment and performing subsequent analyses on the aged chemicals.
Date: October 15, 2012
Creator: Fox, Elise B; Kendrick, Sarah E.; Visser, Ann E. & Bridges, Nicholas J.
Object Type: Article
System: The UNT Digital Library
Photovoltaic Materials (open access)

Photovoltaic Materials

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop …
Date: October 15, 2012
Creator: Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E. et al.
Object Type: Report
System: The UNT Digital Library
Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste (open access)

Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. …
Date: October 15, 2012
Creator: Turick, C & Berry, C.
Object Type: Report
System: The UNT Digital Library
Wide range tune scan simulations for RHIC (open access)

Wide range tune scan simulations for RHIC

N/A
Date: October 15, 2012
Creator: Luo, Y.; Bai, M.; Fischer, W. & White, S.
Object Type: Report
System: The UNT Digital Library
Development of Transparent Ceramic Ce-Doped Gadolinium Garnet Gamma Spectrometers (open access)

Development of Transparent Ceramic Ce-Doped Gadolinium Garnet Gamma Spectrometers

None
Date: November 15, 2012
Creator: Cherepy, N J; Seeley, Z M; Payne, S A; Beck, P R; Drury, O B; O'Neal, S P et al.
Object Type: Article
System: The UNT Digital Library
The effect of high-level waste glass composition on spinel liquidus temperature (open access)

The effect of high-level waste glass composition on spinel liquidus temperature

Spinel crystals precipitate in high-level waste glasses containing Fe, Cr, Ni, Mn, Zn, and Ru. The liquidus temperature (T{sub L}d) of spinel as the primary crystallization phase is a function of glass composition, and the spinel solubility (c{sub o}) is a function of both glass composition and temperature (T). Previously reported models of T{sub L} as a function of composition are based on T{sub L} measured directly, which requires laborious experimental procedures. Viewing the curve of c{sub o} versus T as the liquidus line allows a significant broadening of the composition region for model fitting. This paper estimates T{sub L} as a function of composition based on c{sub o} data obtained with the X-ray diffraction technique.
Date: November 15, 2012
Creator: Kruger, A. A.; Riley, Brian J.; Crum, Jarrod V.; Hrma, Pavel & Matyas, Josef
Object Type: Article
System: The UNT Digital Library
Extending MC-SURE to Denoise Sensor Data Streams (open access)

Extending MC-SURE to Denoise Sensor Data Streams

None
Date: November 15, 2012
Creator: Ndoye, M. & Kamath, C.
Object Type: Article
System: The UNT Digital Library
FY12 LLNL OMEGA Experimental Programs (open access)

FY12 LLNL OMEGA Experimental Programs

None
Date: November 15, 2012
Creator: Heeter, R.; Fournier, K.; Baker, K.; Celliers, P.; Fratanduono, D.; Hawreliak, J. et al.
Object Type: Report
System: The UNT Digital Library
Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Detroit Dam, 2011 (open access)

Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Detroit Dam, 2011

Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Detroit Dam (DET) on the North Santiam River, Oregon for the U.S. Army Corps of Engineers (USACE) to provide data to support decisions on long-term measures to enhance downstream passage at DET and others dams in USACE’s Willamette Valley Project. This study was conducted in response to regulatory requirements necessitated by the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. The goal of the study was to provide information of juvenile salmonid passage and distribution at DET from February 2011 through February 2012. The results of the hydroacoustic study provide new and, in some cases, first-ever data on passage estimates, run timing, distributions, and relationships between fish passage and environmental variables at the dam. This information will inform management decisions on the design and development of surface passage and collection devices to help restore Chinook salmon populations in the North Santiam River watershed above DET. During the entire study period, an estimated total of 182,526 smolt-size fish (±4,660 fish, 95% CI) passed through turbine penstock intakes. Run timing peaked in winter and early …
Date: November 15, 2012
Creator: Khan, Fenton; Royer, Ida M.; Johnson, Gary E. & Ham, Kenneth D.
Object Type: Report
System: The UNT Digital Library
Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at John Day Dam, Summer 2010 (open access)

Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at John Day Dam, Summer 2010

The purpose of this study was to evaluate dam passage survival of subyearling Chinook salmon (Oncorhynchus tshawytscha; CH0) at John Day Dam (JDA) during summer 2010. This study was conducted by researchers from the Pacific Northwest National Laboratory (PNNL) in collaboration with the Pacific States Marine Fisheries Commission (PSMFC) and the University of Washington (UW). The study was designed to estimate the effects of 30% and 40% spill treatment levels on single release survival rates of CH0 passing through two reaches: (1) the dam, and 40 km of tailwater, (2) the forebay, dam, and 40 km of tailwater. The study also estimated additional passage performance measures which are stipulated in the Columbia Basin Fish Accords.
Date: November 15, 2012
Creator: Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J. et al.
Object Type: Report
System: The UNT Digital Library
Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at John Day Dam, Spring 2010 (open access)

Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at John Day Dam, Spring 2010

The purpose of this study was to compare dam passage survival, at two spill treatment levels, of yearling Chinook salmon and steelhead smolts at John Day Dam during spring 2010. The two treatments were 30% and 40% spill out of total project discharge. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated forebay residence time, tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. However, by agreement among the stakeholders, this study was not an official BiOp compliance test because the long-term passage measures at John Day Dam have yet to be finalized and another year of spill-treatment testing was desired.
Date: November 15, 2012
Creator: Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J. et al.
Object Type: Report
System: The UNT Digital Library
Paralization and check pointing of GPU applications through program transformation (open access)

Paralization and check pointing of GPU applications through program transformation

GPUs have emerged as a powerful tool for accelerating general-purpose applications. The availability of programming languages that makes writing general-purpose applications for running on GPUs tractable have consolidated GPUs as an alternative for accelerating generalpurpose applications. Among the areas that have bene#12;ted from GPU acceleration are: signal and image processing, computational uid dynamics, quantum chemistry, and, in general, the High Performance Computing (HPC) Industry. In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems are gaining popularity. In this context, single-GPU applications are parallelized for running in multi-GPU systems. Furthermore, multi-GPU systems help to solve the GPU memory limitation for applications with large application memory footprint. Parallelizing single-GPU applications has been approached by libraries that distribute the workload at runtime, however, they impose execution overhead and are not portable. On the other hand, on traditional CPU systems, parallelization has been approached through application transformation at pre-compile time, which enhances the application to distribute the workload at application level and does not have the issues of library-based approaches. Hence, a parallelization scheme for GPU systems based on application transformation is needed. Like any computing engine of today, reliability is also a concern in GPUs. GPUs are vulnerable …
Date: November 15, 2012
Creator: Solano-Quinde, Lizandro Dami#19 & Laboratory], an
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Performance analysis of Darshan 2.2.3 on the Cray XE6 platform. (open access)

Performance analysis of Darshan 2.2.3 on the Cray XE6 platform.

None
Date: November 15, 2012
Creator: Carns, P.; Harms, K.; Latham, R. & Ross, R. (Mathematics and Computer Science)
Object Type: Report
System: The UNT Digital Library
Southeast Regional CO2 Sequestration Technology Training Program (SECARB-Ed) (open access)

Southeast Regional CO2 Sequestration Technology Training Program (SECARB-Ed)

None
Date: November 15, 2012
Creator: Baskin, Kathryn; Hill, Gerald; Berry, Patricia; Ripepi, Nino; Karmis, Michael; Young, Michael et al.
Object Type: Report
System: The UNT Digital Library
Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets (open access)

Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

None
Date: November 15, 2012
Creator: Higginson, D P
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460 (open access)

Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.
Date: November 15, 2012
Creator: Yanochko, Ronald M & Corcoran, Connie
Object Type: Article
System: The UNT Digital Library
CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries (open access)

CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries

Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System’s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have …
Date: December 15, 2012
Creator: Daniel, C.; Armstrong, B.; Maxey, C.; Sabau, A.; Wang, H.; Hagans, P. (A123 Systems, Inc.) et al.
Object Type: Report
System: The UNT Digital Library
Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations (open access)

Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.
Date: December 15, 2012
Creator: Schwam, David
Object Type: Report
System: The UNT Digital Library