Degree Department

Ultrafast Spectroscopy of Hybrid Ingan/gan Quantum Wells (open access)

Ultrafast Spectroscopy of Hybrid Ingan/gan Quantum Wells

Group III nitrides are efficient light emitters. The modification of internal optoelectronic properties of these materials due to strain, external or internal electric field are an area of interest. Insertion of metal nanoparticles (MNPs) (Ag, Au etc) inside the V-shaped inverted hexagonal pits (IHP) of InGaN/GaN quantum wells (QWs) offers the potential of improving the light emission efficiencies. We have observed redshift and blueshift due to the Au MNPs and Ag MNPs respectively. This shift could be due to the electric field created by the MNPs through electrostatic image charge. We have studied the ultrafast carrier dynamics of carriers in hybrid InGaN/GaN QWs. The change in quantum confinement stark effect due to MNPs plays an important role for slow and fast carrier dynamics. We have also observed the image charge effect on the ultrafast differential transmission measurement due to the MNPs. We have studied the non-linear absorption spectroscopy of these materials. The QWs behave as a discharging of a nanocapacitor for the screening of the piezoelectric field due to the photo-excited carriers. We have separated out screening and excitonic bleaching components from the main differential absorption spectra of InGaN/GaN QWs.
Date: August 2012
Creator: Mahat, Meg Bahadur
System: The UNT Digital Library
A Non-equilibrium Approach to Scale Free Networks (open access)

A Non-equilibrium Approach to Scale Free Networks

Many processes and systems in nature and society can be characterized as large numbers of discrete elements that are (usually non-uniformly) interrelated. These networks were long thought to be random, but in the late 1990s, Barabási and Albert found that an underlying structure did in fact exist in many natural and technological networks that are now referred to as scale free. Since then, researchers have gained a much deeper understanding of this particular form of complexity, largely by combining graph theory, statistical physics, and advances in computing technology. This dissertation focuses on out-of-equilibrium dynamic processes as they unfold on these complex networks. Diffusion in networks of non-interacting nodes is shown to be temporally complex, while equilibrium is represented by a stable state with Poissonian fluctuations. Scale free networks achieve equilibrium very quickly compared to regular networks, and the most efficient are those with the lowest inverse power law exponent. Temporally complex diffusion also occurs in networks with interacting nodes under a cooperative decision-making model. At a critical value of the cooperation parameter, the most efficient scale free network achieves consensus almost as quickly as the equivalent all-to-all network. This finding suggests that the ubiquity of scale free networks in nature …
Date: August 2012
Creator: Hollingshad, Nicholas W.
System: The UNT Digital Library
Theoretical and Experimental Investigations Concerning Microgels of Varied Spherical Geometries (open access)

Theoretical and Experimental Investigations Concerning Microgels of Varied Spherical Geometries

Polymer gels have been studied extensively due to their ability to simulate biological tissues and to swell or collapse reversibly in response to external stimuli. This work presents a variety of studies using poly-N-isopropylacrylamide (PNIPA) hydrogels. The projects have been carried out both in the lab of Dr. Zhibing Hu and in collaboration with others outside of UNT: (1) an analysis of the swelling kinetics of microgel spherical shells prepared using a novel design of microfluidic devices; (2) a comparison of the drug-release rates between nanoparticle structures having either core or core-with-shell (core-shell) designs; (3) an investigation into the thermodynamics of swelling for microgels of exceedingly small size.
Date: August 2012
Creator: Wahrmund, Joshua Joseph
System: The UNT Digital Library