Multi-perspective, Multi-modal Image Registration and Fusion (open access)

Multi-perspective, Multi-modal Image Registration and Fusion

Multi-modal image fusion is an active research area with many civilian and military applications. Fusion is defined as strategic combination of information collected by various sensors from different locations or different types in order to obtain a better understanding of an observed scene or situation. Fusion of multi-modal images cannot be completed unless these two modalities are spatially aligned. In this research, I consider two important problems. Multi-modal, multi-perspective image registration and decision level fusion of multi-modal images. In particular, LiDAR and visual imagery. Multi-modal image registration is a difficult task due to the different semantic interpretation of features extracted from each modality. This problem is decoupled into three sub-problems. The first step is identification and extraction of common features. The second step is the determination of corresponding points. The third step consists of determining the registration transformation parameters. Traditional registration methods use low level features such as lines and corners. Using these features require an extensive optimization search in order to determine the corresponding points. Many methods use global positioning systems (GPS), and a calibrated camera in order to obtain an initial estimate of the camera parameters. The advantages of our work over the previous works are the following. …
Date: August 2012
Creator: Belkhouche, Mohammed Yassine
System: The UNT Digital Library
Sentence Similarity Analysis with Applications in Automatic Short Answer Grading (open access)

Sentence Similarity Analysis with Applications in Automatic Short Answer Grading

In this dissertation, I explore unsupervised techniques for the task of automatic short answer grading. I compare a number of knowledge-based and corpus-based measures of text similarity, evaluate the effect of domain and size on the corpus-based measures, and also introduce a novel technique to improve the performance of the system by integrating automatic feedback from the student answers. I continue to combine graph alignment features with lexical semantic similarity measures and employ machine learning techniques to show that grade assignment error can be reduced compared to a system that considers only lexical semantic measures of similarity. I also detail a preliminary attempt to align the dependency graphs of student and instructor answers in order to utilize a structural component that is necessary to simulate human-level grading of student answers. I further explore the utility of these techniques to several related tasks in natural language processing including the detection of text similarity, paraphrase, and textual entailment.
Date: August 2012
Creator: Mohler, Michael A. G.
System: The UNT Digital Library