Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing (open access)

Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are …
Date: April 11, 2012
Creator: Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael et al.
Object Type: Report
System: The UNT Digital Library
Amplitude Analysis and Measurement of the Time-dependent CP Asymmetry of B0 to KsKsKs Decays (open access)

Amplitude Analysis and Measurement of the Time-dependent CP Asymmetry of B0 to KsKsKs Decays

We present the first results on the Dalitz-plot structure and improved measurements of the time-dependent CP-violation parameters of the process B{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0} obtained using 468 x 10{sup 6} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. The Dalitz-plot structure is probed by a time-integrated amplitude analysis that does not distinguish between B{sup 0} and {bar B}{sup 0} decays. We measure the total inclusive branching fraction {Beta}(B{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0}) = (6.19 {+-} 0.48 {+-} 0.15 {+-} 0.12) x 10{sup -6}, where the first uncertainty is statistical, the second is systematic, and the third represents the Dalitz-plot signal model dependence. We also observe evidence for the intermediate resonant states f{sub 0}(980), f{sub 0}(1710), and f{sub 2}(2010). Their respective product branching fractions are measured to be (2.70{sub -1.19}{sup +1.25} {+-} 0.36 {+-} 1.17) x 10{sup -6}, (0.50{sub -0.24}{sup +0.46} {+-} 0.04 {+-} 0.10) x 10{sup -6}, and (0.54{sub -0.20}{sup +0.21} {+-} 0.03 {+-} 0.52) x 10{sup -6}. Additionally, we determine the mixing-induced CP-violation parameters to be S = -0.94{sub -0.21}{sup +0.24} {+-} 0.06 and C = -0.17 {+-} 0.18 {+-} …
Date: April 11, 2012
Creator: Lees, J. P.
Object Type: Article
System: The UNT Digital Library
SiD Letter of Intent (open access)

SiD Letter of Intent

This document presents the current status of the Silicon Detector (SiD) effort to develop an optimized design for an experiment at the International Linear Collider. It presents detailed discussions of each of SiD's various subsystems, an overview of the full GEANT4 description of SiD, the status of newly developed tracking and calorimeter reconstruction algorithms, studies of subsystem performance based on these tools, results of physics benchmarking analyses, an estimate of the cost of the detector, and an assessment of the detector R and D needed to provide the technical basis for an optimised SiD.
Date: April 11, 2012
Creator: Aihara, H.; Burrows, P.; Oreglia, M.; Berger, E. L.; Guarino, V.; Repond, J. et al.
Object Type: Report
System: The UNT Digital Library
Delta f Monte Carlo Calculation Of Neoclassical Transport In Perturbed Tokamaks (open access)

Delta f Monte Carlo Calculation Of Neoclassical Transport In Perturbed Tokamaks

Non-axisymmetric magnetic perturbations can fundamentally change neoclassical transport in tokamaks by distorting particle orbits on deformed or broken flux surfaces. This so-called non-ambipolar transport is highly complex, and eventually a numerical simulation is required to achieve its precise description and understanding. A new delta#14;f particle code (POCA) has been developed for this purpose using a modi ed pitch angle collision operator preserving momentum conservation. POCA was successfully benchmarked for neoclassical transport and momentum conservation in axisymmetric con guration. Non-ambipolar particle flux is calculated in the non-axisymmetric case, and results show a clear resonant nature of non-ambipolar transport and magnetic braking. Neoclassical toroidal viscosity (NTV) torque is calculated using anisotropic pressures and magnetic fi eld spectrum, and compared with the generalized NTV theory. Calculations indicate a clear #14;B2 dependence of NTV, and good agreements with theory on NTV torque pro les and amplitudes depending on collisionality.
Date: April 11, 2012
Creator: Kimin Kim, Jong-Kyu Park, Gerrit Kramer and Allen H. Boozer
Object Type: Report
System: The UNT Digital Library
2011 Computation Directorate Annual Report (open access)

2011 Computation Directorate Annual Report

From its founding in 1952 until today, Lawrence Livermore National Laboratory (LLNL) has made significant strategic investments to develop high performance computing (HPC) and its application to national security and basic science. Now, 60 years later, the Computation Directorate and its myriad resources and capabilities have become a key enabler for LLNL programs and an integral part of the effort to support our nation's nuclear deterrent and, more broadly, national security. In addition, the technological innovation HPC makes possible is seen as vital to the nation's economic vitality. LLNL, along with other national laboratories, is working to make supercomputing capabilities and expertise available to industry to boost the nation's global competitiveness. LLNL is on the brink of an exciting milestone with the 2012 deployment of Sequoia, the National Nuclear Security Administration's (NNSA's) 20-petaFLOP/s resource that will apply uncertainty quantification to weapons science. Sequoia will bring LLNL's total computing power to more than 23 petaFLOP/s-all brought to bear on basic science and national security needs. The computing systems at LLNL provide game-changing capabilities. Sequoia and other next-generation platforms will enable predictive simulation in the coming decade and leverage industry trends, such as massively parallel and multicore processors, to run petascale applications. …
Date: April 11, 2012
Creator: Crawford, D. L.
Object Type: Report
System: The UNT Digital Library
Charge transport properties of CdMnTe radiation detectors (open access)

Charge transport properties of CdMnTe radiation detectors

Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.
Date: April 11, 2012
Creator: Kim, K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G. et al.
Object Type: Report
System: The UNT Digital Library
Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes (open access)

Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.
Date: April 11, 2012
Creator: Abdo, A. A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W. B.; Axelsson, M. et al.
Object Type: Article
System: The UNT Digital Library
Recent Beam Measurements and New Instrumentation at the Advanced Light Source (open access)

Recent Beam Measurements and New Instrumentation at the Advanced Light Source

The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and used in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.
Date: April 11, 2012
Creator: Sannibale, F.; Baptiste, K.; Barry, W.; Chin, M.; /LBL, Berkeley; Filippetto, D. et al.
Object Type: Article
System: The UNT Digital Library
Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling (open access)

Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focus of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so …
Date: April 11, 2012
Creator: Evans, James W.
Object Type: Report
System: The UNT Digital Library
Godiva IV and Juliet Diagnostics CED-1, Rev. 1 (IER-176) (open access)

Godiva IV and Juliet Diagnostics CED-1, Rev. 1 (IER-176)

The Juliet experiment is currently in preliminary design (IER-128). This experiment will utilize a suite of diagnostics to measure the physical state of the device (temperature, surface motion, stress, etc.) and the total and time rate of change of neutron and gamma fluxes. A variety of potential diagnostics has been proposed in this CED-1 report. Based on schedule and funding, a subset of diagnostics will be selected for testing using the Godiva IV pulsed reactor as a source of neutrons and gammas. The diagnostics development and testing will occur over a two year period (FY12-13) culminating in a final set of diagnostics to be fielded for he Juliet experiment currently proposed for execution in FY15.
Date: April 11, 2012
Creator: Scorby, J C & Myers, W L
Object Type: Report
System: The UNT Digital Library