183 Matching Results

Results open in a new window/tab.

Toward fully self-consistent simulation of the interaction of E-Clouds and beams with WARP-POSINST (open access)

Toward fully self-consistent simulation of the interaction of E-Clouds and beams with WARP-POSINST

To predict the evolution of electron clouds and their effect on the beam, the high energy physics community has relied so far on the complementary use of 'buildup' and 'single/multi-bunch instability' reduced descriptions. The former describes the evolution of electron clouds at a given location in the ring, or 'station', under the influence of prescribed beams and external fields [1], while the latter (sometimes also referred as the 'quasi-static' approximation [2]) follows the interaction between the beams and the electron clouds around the accelerator with prescribed initial distributions of electrons, assumed to be concentrated at a number of discrete 'stations' around the ring. Examples of single bunch instability codes include HEADTAIL [3], QuickPIC [4, 5], and PEHTS [6]. By contrast, a fully self-consistent approach, in which both the electron cloud and beam distributions evolve simultaneously under their mutual influence without any restriction on their relative motion, is required for modeling the interaction of high-intensity beams with electron clouds for heavy-ion beam-driven fusion and warm-dense matter science. This community has relied on the use of Particle-In-Cell (PIC) methods through the development and use of the WARP-POSINST code suite [1, 7, 8]. The development of novel numerical techniques (including adaptive mesh refinement, …
Date: April 9, 2012
Creator: Lawrence Livermore National Laboratory
System: The UNT Digital Library
Gearbox Reliability Collaborative: Test and Model Investigation of Sun Orbit and Planet Load Share in a Wind Turbine Gearbox; Preprint (open access)

Gearbox Reliability Collaborative: Test and Model Investigation of Sun Orbit and Planet Load Share in a Wind Turbine Gearbox; Preprint

This paper analyzes experimental measurement of the sun gear orbit in dynamometer testing and describes its relation to the other measured responses of the planetary stage. The relation of the sun orbit to component runout, component flexibility, gear coupling alignment, planet load share, and planet position error will be investigated. Equations describing the orbit of the sun gear in the test cases are derived. Rigid and flexible multibody models of the full gearbox are investigated and compared to sun and planet measurements. This paper shows that the sun gear's path may be influenced by gear coupling responses and gearbox structural flexibilities.
Date: April 1, 2012
Creator: LaCava, W.; Keller, J. & McNiff, B.
System: The UNT Digital Library
Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint (open access)

Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint

Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.
Date: April 1, 2012
Creator: Smith, R. M.; Jordan, D. C. & Kurtz, S. R.
System: The UNT Digital Library
Fully Integrated Applications of Thin Films on Low Temperature Cofired Ceramic (LTCC) (open access)

Fully Integrated Applications of Thin Films on Low Temperature Cofired Ceramic (LTCC)

Thin film multilayers have previously been introduced on multilayer low temperature cofired ceramic (LTCC), as well as initial thin film capacitors on LTCC. The ruggedness of a multipurpose Ti-Cu-Pt-Au stack for connectivity and RF conductivity has continued to benefit fabrication and reliability in state of-the-art modules, while the capacitors have followed the traditional Metal-Insulator-Metal (MIM) style. The full integration of thin film passives with thin film connectivity traces is presented. Certain passives, such as capacitors, require specifically tailored and separately patterned thin film (multi-)layers, including a dielectric. Different capacitance values are achieved by variation of both the insulator layer thickness and the active area of the capacitor. Other passives, such as filters, require only the conductor - a single thin film multilayer. This can be patterned from the same connectivity thin film material (Ti-Cu-Pt-Au), or a specially tailored thin film material (e.g. Ti-Cu-Au) can be deposited. Both versions are described, including process and integration details. Examples are discussed, ranging from patterning for maximum tolerances, to space and performance-optimized designs. Cross-sectional issues associated with integration are also highlighted in the discussion.
Date: April 19, 2012
Creator: Wolf, Ambrose; Peterson, Ken; O'Keefe, Matt; Huebner, Wayne & Kuhn, Bill
System: The UNT Digital Library
IMPROVED COMPUTATIONAL NEUTRONICS METHODS AND VALIDATION PROTOCOLS FOR THE ADVANCED TEST REACTOR (open access)

IMPROVED COMPUTATIONAL NEUTRONICS METHODS AND VALIDATION PROTOCOLS FOR THE ADVANCED TEST REACTOR

The Idaho National Laboratory (INL) is in the process of modernizing the various reactor physics modeling and simulation tools used to support operation and safety assurance of the Advanced Test Reactor (ATR). Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core depletion HELIOS calculations for all ATR cycles since August 2009 was successfully completed during 2011. This demonstration supported a decision late in the year to proceed with the phased incorporation of the HELIOS methodology into the ATR fuel cycle management process beginning in 2012. On the experimental side of the project, new hardware was fabricated, measurement protocols were finalized, and the first four of six planned physics code validation experiments based on neutron activation spectrometry were conducted at the ATRC facility. Data analysis for the …
Date: April 1, 2012
Creator: Nigg, David W.; Nielsen, Joseph W.; Chase, Benjamin M.; Murray, Ronnie K. & Steuhm, Kevin A.
System: The UNT Digital Library
Model-Independent Results for the Decay B \to L Nu(L) Gamma at BaBar (open access)

Model-Independent Results for the Decay B \to L Nu(L) Gamma at BaBar

We present a search for the radiative leptonic decays B{sub +} {yields} e{sup +} {nu}{sub e}{gamma} and B{sup +} {yields} {mu}{sup +}{nu}{sub {mu}}{gamma} using data collected by the BABAR detector at the PEP-II B factory. We fully reconstruct the hadronic decay of one of the B mesons in {Upsilon}(4S) {yields} B{sup +}B{sup -} and then search for evidence of the signal decay within the rest of the event. This method provides clean kinematic information on the signal's missing energy and high momentum photon and lepton, and allows for a model-independent analysis of this decay. Using a data sample of 465 million B-meson pairs, we obtain sensitivity to branching fractions of the same order as predicted by the Standard Model. We report a model-independent branching fraction upper limit of {Beta}(B{sup +} {yields} {ell}{sup +}{nu}{sub {ell}}{gamma}) < 15.6 x 10{sup -6} ({ell} = e or {mu}) at the 90% confidence level.
Date: April 9, 2012
Creator: Lindemann, D. M.
System: The UNT Digital Library
Coherent electron cooling proof of principle instrumentation design (open access)

Coherent electron cooling proof of principle instrumentation design

The goal of the Coherent Electron Cooling Proof-of-Principle (CeC PoP) experiment being designed at RHIC is to demonstrate longitudinal (energy spread) cooling before the expected CD-2 for eRHIC. The scope of the experiment is to longitudinally cool a single bunch of 40 GeV/u gold ions in RHIC. This paper will describe the instrumentation systems proposed to meet the diagnostics challenges. These include measurements of beam intensity, emittance, energy spread, bunch length, position, orbit stability, and transverse and temporal alignment of electron and ion beams.
Date: April 15, 2012
Creator: M., Gassner D.; Litvinenko, V.; Michnoff, R.; Miller, T.; Minty, M. & Pinayev, I.
System: The UNT Digital Library
Eliminating the Renormalization Scale Ambiguity for Top-Pair Production Using the Principle of Maximum Conformality (open access)

Eliminating the Renormalization Scale Ambiguity for Top-Pair Production Using the Principle of Maximum Conformality

The uncertainty in setting the renormalization scale in finite-order perturbative QCD predictions using standard methods substantially reduces the precision of tests of the Standard Model in collider experiments. It is conventional to choose a typical momentum transfer of the process as the renormalization scale and take an arbitrary range to estimate the uncertainty in the QCD prediction. However, predictions using this procedure depend on the choice of renormalization scheme, leave a non-convergent renormalon perturbative series, and moreover, one obtains incorrect results when applied to QED processes. In contrast, if one fixes the renormalization scale using the Principle of Maximum Conformality (PMC), all non-conformal {l_brace}{beta}{sub i}{r_brace}-terms in the perturbative expansion series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC renormalization scale {mu}{sub R}{sup PMC} and the resulting finite-order PMC prediction are both to high accuracy independent of choice of the initial renormalization scale {mu}{sub R}{sup init}, consistent with renormalization group invariance. Moreover, after PMC scale-setting, the n!-growth of the pQCD expansion is eliminated. Even the residual scale-dependence at fixed order due to unknown higher-order {l_brace}{beta}{sub i}{r_brace}-terms is substantially suppressed. As an application, we apply the PMC procedure to obtain …
Date: April 2, 2012
Creator: Brodsky, Stanley J. & Wu, Xing-Gang
System: The UNT Digital Library
On The Origin Of High Energy Correlations in Gamma-ray Bursts (open access)

On The Origin Of High Energy Correlations in Gamma-ray Bursts

I investigate the origin of the observed correlation between a gamma-ray burst's {nu}F{sub {nu}} spectral peak E{sub pk} and its isotropic equivalent energy E{sub iso} through the use of a population synthesis code to model the prompt gamma-ray emission from GRBs. By using prescriptions for the distribution of prompt spectral parameters as well as the population's luminosity function and co-moving rate density, I generate a simulated population of GRBs and examine how bursts of varying spectral properties and redshift would appear to a gamma-ray detector here on Earth. I find that a strong observed correlation can be produced between the source frame Epk and Eiso for the detected population despite the existence of only a weak and broad correlation in the original simulated population. The energy dependance of a gamma-ray detector's flux-limited detection threshold acts to produce a correlation between the source frame E{sub pk} and E{sub iso} for low luminosity GRBs, producing the left boundary of the observed correlation. Conversely, very luminous GRBs are found at higher redshifts than their low luminosity counterparts due to the standard Malquest bias, causing bursts in the low E{sub pk}, high E{sub iso} regime to go undetected because their E{sub pk} values would …
Date: April 3, 2012
Creator: Kocevski, Daniel
System: The UNT Digital Library
N*(1535) electroproduction at high Q2 (open access)

N*(1535) electroproduction at high Q2

A covariant spectator quark model is applied to study the {gamma}N {yields} N*(1535) reaction in the large Q{sup 2} region. Starting from the relation between the nucleon and N*(1535) systems, the N*(1535) valence quark wave function is determined without the addition of any parameters. The model is then used to calculate the {gamma}N {yields} N*(1535) transition form factors. A very interesting, useful relation between the A{sub 1/2} and S{sub 1/2} helicity amplitudes for Q{sup 2} > GeV{sup 2}, is also derived.
Date: April 1, 2012
Creator: G. Ramalho, M.T. Pena, K. Tsushima
System: The UNT Digital Library
Measurements of the Electron Cloud Density in the PEP-II Low Energy Ring (open access)

Measurements of the Electron Cloud Density in the PEP-II Low Energy Ring

Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energy electron clouds over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave that is independently excited and transmitted over a section of the accelerator. We infer the absolute phase shift with relatively high accuracy from the phase modulation of the transmission due to the modulation of the electron cloud density from a gap in the positively charged beam. We have used this technique for the first time to measure the average electron cloud density over a 50 m straight section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center. We have also measured the variation of the density by using low field solenoid magnets to control the electrons.
Date: April 10, 2012
Creator: Byrd, J.; De Santis, S.; Sonnad, K.; Caspers, F.; Kroyer, T.; Krasnykh, A. et al.
System: The UNT Digital Library
Search for the Z_1(4050)^+ and Z_2(4250)^+ States in bar B^0 to chi_{c1} K^- pi^+ and B^+ to chi_{c1} K^0_S pi^+ (open access)

Search for the Z_1(4050)^+ and Z_2(4250)^+ States in bar B^0 to chi_{c1} K^- pi^+ and B^+ to chi_{c1} K^0_S pi^+

We search for the Z{sub 1}(4050){sup +} and Z{sub 2}(4250){sup +} states, reported by the Belle Collaboration, decaying to {chi}{sub c1}{pi}{sup +} in the decays {bar B}{sup 0} {yields} {chi}{sub c1}K{sup -}{pi}{sup +} and B{sup +} {yields} {chi}{sub c1}K{sub S}{sup 0}{pi}{sup +} where {chi}{sub c1} {yields} J/{psi}{gamma}. The data were collected with the BABAR detector at the SLAC PEP-II asymmetric-energy e{sup +}e{sup -} collider operating at center-of-mass energy 10.58 GeV, and correspond to an integrated luminosity of 429 fb{sup -1}. In this analysis, we model the background-subtracted, efficiency-corrected {chi}{sub c1}{pi}{sup +} mass distribution using the K{pi} mass distribution and the corresponding normalized K{pi} Legendre polynomial moments, and then test the need for the inclusion of resonant structures in the description of the {chi}{sub c1}{pi}{sup +} mass distribution. No evidence is found for the Z{sub 1}(4050){sup +} and Z{sub 2}(4250){sup +} resonances, and 90% confidence level upper limits on the branching fractions are reported for the corresponding B-meson decay modes.
Date: April 10, 2012
Creator: Lees, J. P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M. et al.
System: The UNT Digital Library
General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes (open access)

General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with …
Date: April 26, 2012
Creator: McKinney, Jonathan C.; Tchekhovskoy, Alexander & Blandford, Roger D.
System: The UNT Digital Library
Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint (open access)

Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.
Date: April 1, 2012
Creator: Stynes, J. K. & Ihas, B.
System: The UNT Digital Library
Deeply Virtual Compton Scattering and Meson Production at Jlab/CLAS (open access)

Deeply Virtual Compton Scattering and Meson Production at Jlab/CLAS

This report reviews the recent experimental results from the CLAS collaboration (Hall B of Jefferson Lab, or JLab) on Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) and discusses their interpretation in the framework of Generalized Parton Distributions (GPDs). The impact of the experimental data on the applicability of the GPD mechanism to these exclusive reactions is discussed. Initial results obtained from JLab 6 GeV data indicate that DVCS might already be interpretable in this framework while GPD models fail to describe the exclusive meson production (DVMP) data with the GPD parameterizations presently used. An exception is the {phi} meson production for which the GPD mechanism appears to apply. The recent global analyses aiming to extract GPDs from fitting DVCS CLAS and world data are discussed. The GPD experimental program at CLAS12, planned with the upcoming 12 GeV upgrade of JLab, is briefly presented.
Date: April 1, 2012
Creator: Jo, Hyon-Suk
System: The UNT Digital Library
Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint (open access)

Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).
Date: April 1, 2012
Creator: Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M. et al.
System: The UNT Digital Library
Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint (open access)

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.
Date: April 1, 2012
Creator: Maniaci, D. C. & Li, Y.
System: The UNT Digital Library
Lepton-Flavor-Violating Tau Decays at BaBar (open access)

Lepton-Flavor-Violating Tau Decays at BaBar

We present the most recent searches for lepton-flavor-violating (LFV) {tau} decays in BABAR. We find no evidence of {tau} decaying to three charged leptons or to a charged lepton and a neutral meson (K{sub S}{sup 0}, {rho}, {phi}, K*{sup 0}, {bar K}*{sup 0}), and set upper limits on the corresponding branching fractions (BF) between 1.8 and 19 x 10{sup -8} at 90% confidence level (CL).
Date: April 9, 2012
Creator: Marchiori, G. & /Paris, LPTHE
System: The UNT Digital Library
Two- and Three-Body Charmless B Decays at BaBar (open access)

Two- and Three-Body Charmless B Decays at BaBar

We report recent measurements of rare charmless B decays performed by BaBar. The results are based on the final BaBar dataset of 424 fb{sup -1} collected at the PEP-II B-factory based at the SLAC National Accelerator Laboratory. The study of rare B decays is a key ingredient to meet two of the main goals of the B-factories: assessing the validity of the Cabibbo-Kobayashi-Maskawa (CKM) picture of CP-violation by precisely measuring the elements of the Unitarity Triangle (UT), and searching for hints of New Physics (NP), or otherwise constraining NP scenarios, in processes which are suppressed in the Standard Model (SM). In loop processes, in particular, NP at some higher energy scale may manifest itself in the low energy effective theory as new couplings, such as those introduced by new very massive virtual particles in the loop. In NP searches hadronic uncertainties can play a major role, expecially for branching fraction measurements. Many theoretical uncertainties cancel in ratios of amplitudes, and most NP probes are therefore of this kind. In the following sections we report recent measurements, performed by the BaBar Collaboration, that are relevant to NP searches in charmless hadronic B decays.
Date: April 5, 2012
Creator: Stracka, Simone
System: The UNT Digital Library
High precision measurements of the neutron spin structure in Hall A at Jlab (open access)

High precision measurements of the neutron spin structure in Hall A at Jlab

Conclusions of this presentation are: (1) JLab energy upgrade will offer new exciting opportunities to study the nucleon (spin) structure such as high precision, unexplored phase space, flavor decomposition; (2) Large technological efforts is in progress to optimally exploit these opportunities; (3) HallA will be the first hall to get the new beam, first experiment expected to run in 2014; (4) A1n likely one of the first experiments to take data in the new 12 GeV era; and (5) SIDIS exp. will follow in couple of years.
Date: April 1, 2012
Creator: Annand, R M; Cates, G; Cisbani, E; Franklin, G B; Liyanage, N; Puckett, A et al.
System: The UNT Digital Library
Diffraction Results from CDF (open access)

Diffraction Results from CDF

We present final results by the CDF II collaboration on diffractive W and Z production, report on the status of ongoing analyses on diffractive dijet production and on rapidity gaps between jets, and briefly summarize results obtained on exclusive production pointing to their relevance to calibrating theoretical models used to predict exclusive Higgs-boson production at the LHC.
Date: April 1, 2012
Creator: Goulianos, Konstantin
System: The UNT Digital Library
Variations in Map Products Demonstrated During the FRMAC Fukushima Daiichi Response (open access)

Variations in Map Products Demonstrated During the FRMAC Fukushima Daiichi Response

This presentation provides a brief summary of the Fukushima Daiichi disaster, discussion on map uses and production, early phase maps, intermediate phase maps, and late phase maps.
Date: April 3, 2012
Creator: Pemberton, W. J.
System: The UNT Digital Library
Measurements of the top quark mass at the Tevatron (open access)

Measurements of the top quark mass at the Tevatron

The mass of the top quark (m{sub top}) is a fundamental parameter of the standard model (SM). Currently, its most precise measurements are performed by the CDF and D0 collaborations at the Fermilab Tevatron p{bar p} collider at a centre-of-mass energy of {radical}s = 1.96 TeV. We review the most recent of those measurements, performed on data samples of up to 8.7 fb{sup -1} of integrated luminosity. The Tevatron combination using up to 5.8 fb{sup -1} of data results in a preliminary world average top quark mass of m{sub top} = 173.2 {+-} 0.9 GeV. This corresponds to a relative precision of about 0.54%. We conclude with an outlook of anticipated precision the final measurement of m{sub top} at the Tevatron.
Date: April 1, 2012
Creator: Brandt, Oleg & /Gottingen U., II. Phys. Inst.
System: The UNT Digital Library
An Alternative View of the Dynamical Origin of the P11 Nucleon Resonances: Results from the Excited Baryon Analysis Center (open access)

An Alternative View of the Dynamical Origin of the P11 Nucleon Resonances: Results from the Excited Baryon Analysis Center

We present an alternative interpretation for the dynamical origin of the P{sub 11} nucleon resonances, which results from the dynamical coupled-channels analysis at Excited Baryon Analysis Center of Jefferson Lab. The results indicate the crucial role of the multichannel reaction dynamics in determining the N* spectrum. An understanding of the spectrum and structure of the excited nucleon (N*) states is a fundamental challenge in the hadron physics. The N* states, however, couple strongly to the meson-baryon continuum states and appear only as resonance states in the {gamma}N and {pi}N reactions. One can expect from such strong couplings that the (multichannel) reaction dynamics will affect significantly the N* states and cannot be neglected in extracting the N* parameters from the data and giving physical interpretations. It is thus well recognized nowadays that a comprehensive study of all relevant meson production reactions with {pi}N,{eta}N,{pi}{pi}N,KY, {hor_ellipsis} final states is necessary for a reliable extraction of the N* parameters. To address this challenging issue, the Excited Baryon Analysis Center (EBAC) of Jefferson Lab has been conducting the comprehensive analysis of the world data of {gamma}N,{pi}N {yields} {pi}N,{eta}N,{pi}{pi}N,KY, {hor_ellipsis} reactions systematically, covering the wide energy and kinematic regions. The analysis is pursued with a dynamical …
Date: April 1, 2012
Creator: Kamano, Hiroyuki
System: The UNT Digital Library