Fuel Quality Issues in Stationary Fuel Cell Systems. (open access)

Fuel Quality Issues in Stationary Fuel Cell Systems.

Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, …
Date: February 7, 2012
Creator: Papadias, D.; Ahmed, S. & Kumar, R. (Chemical Sciences and Engineering Division)
Object Type: Report
System: The UNT Digital Library
SMALL-SCALE MELTER TESTING WITH LAW SIMULANTS TO ASSESS THE IMPACT OF HIGHER TEMPERATURE MELTER OPERATIONS - Final Report, VSL-04R49801-1, Rev. 0, 2/13/03, Vitreous State Laboratory, The Catholic University of America, Washington, D.C. (open access)

SMALL-SCALE MELTER TESTING WITH LAW SIMULANTS TO ASSESS THE IMPACT OF HIGHER TEMPERATURE MELTER OPERATIONS - Final Report, VSL-04R49801-1, Rev. 0, 2/13/03, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

About 50 million gallons of high-level mixed waste is currently in storage in underground tanks at The United States Department of Energy's (DOE's) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE's Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed of in an engineered facility on the Hanford site while the IHL W product will be directed to the national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. The Office of River Protection is currently examining options to optimize the Low Activity Waste (LAW) facility and the LAW glass waste form. One option under evaluation is to enhance the waste processing rate of the vitrification plant currently under construction. It is likely that the capacity of the LAW vitrification plant …
Date: February 7, 2012
Creator: AA, KRUGER & KS, MATLACK
Object Type: Report
System: The UNT Digital Library
Hyundai Avante LPI Hybrid Level 1 Testing Report. (open access)

Hyundai Avante LPI Hybrid Level 1 Testing Report.

In collaboration with the Korea Automotive Technology Institute (KATECH), the Korean market only Hyundai Avante LPi Hybrid was purchased and imported to ANL's Advanced Powertrain Research Facility for vehicle-level testing. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. To assess the impacts of more aggressive driving, the LA92 cycle and a UDDS scaled by a factor 1.2x cycles were also included in the testing plan. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed. The following sections will seek to explain some of the …
Date: February 7, 2012
Creator: Rask, E.; Bocci, D.; Duoba, M. & Lohse-Busch, H. (Energy Systems)
Object Type: Report
System: The UNT Digital Library
GLASS FORMULATION TESTING TO INCREASE SULFATE INCORPORATION - Final Report VSL-04R4960-1, Rev 0, 2/28/05, Vitreous State Laboratory, The Catholic University of American, Washington, D.C. (open access)

GLASS FORMULATION TESTING TO INCREASE SULFATE INCORPORATION - Final Report VSL-04R4960-1, Rev 0, 2/28/05, Vitreous State Laboratory, The Catholic University of American, Washington, D.C.

About 50 million gallons of high-level mixed waste is currently in storage in underground tanks at The United States Department of Energy's (DOE's) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE's Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed of in an engineered facility on the Hanford site while the IHLW product will be directed to the national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. The Office of River Protection is currently examining options to optimize the Low Activity Waste (LAW) facility and the LAW glass waste form. One option under evaluation is to enhance the waste processing rate of the vitrification plant currently under construction. It is likely that the capacity of the LAW vitrification plant can …
Date: February 7, 2012
Creator: AA, KRUGER & KS, MATLACK
Object Type: Report
System: The UNT Digital Library
MELTING OF GLASS BATCH - MODEL FOR MULTIPLE OVERLAPPING GAS-EVOLVING REACTIONS (open access)

MELTING OF GLASS BATCH - MODEL FOR MULTIPLE OVERLAPPING GAS-EVOLVING REACTIONS

In this study, we present a model for the kinetics of multiple overlapping reactions. Mathematical representation of the kinetics of gas-evolving reactions is crucial for the modeling of the feed-to-glass conversion in a waste-glass melter. The model simulates multiple gas-evolving reactions that occur during heating of a high-alumina high-level waste melter feed. To obtain satisfactory kinetic parameters, we employed Kissinger's method combined with least-squares analysis. The power-law kinetics with variable reaction order sufficed for obtaining excellent agreement with measured thermogravimetric analysis data.
Date: February 7, 2012
Creator: Kruger, A. A.; Pierce, D. A.; Pokorny, R. & Hrma, P. R.
Object Type: Article
System: The UNT Digital Library