Resource Type

144 Matching Results

Results open in a new window/tab.

Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton (open access)

Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton

Article on the spatial mapping of lipids at cellular resolution in embryos of cotton.
Date: February 2012
Creator: Horn, Patrick J.; Korte, Andrew R.; Neogi, Purnima B.; Love, Ebony; Fuchs, Johannes; Strupat, Kerstin et al.
System: The UNT Digital Library
A Systematic Review of the Evidence Base for Telehospice (open access)

A Systematic Review of the Evidence Base for Telehospice

Article on a systematic review of the evidence base for telehospice.
Date: February 2, 2012
Creator: Oliver, Debra Parker; Demiris, George; Wittenberg-Lyles, Elaine; Washington, Karla T.; Day, Tami & Novak, Hannah
System: The UNT Digital Library
Symmetry-induced intermittency in a stochastic reflexive model (open access)

Symmetry-induced intermittency in a stochastic reflexive model

Article on symmetry-induced intermittency in a stochastic reflexive model.
Date: February 21, 2012
Creator: Palatella, Luigi & Grigolini, Paolo
System: The UNT Digital Library
2012 MOLECULAR AND IONIC CLUSTERS GORDON RESEARCH CONFERENCE, JANUARY 29 - FEBRUARY 3, 2012 (open access)

2012 MOLECULAR AND IONIC CLUSTERS GORDON RESEARCH CONFERENCE, JANUARY 29 - FEBRUARY 3, 2012

The Gordon Research Conference on 'Molecular and Ionic Clusters' focuses on clusters, which are the initial molecular species found in gases when condensation begins to occur. Condensation can take place solely from molecules interacting with each other, mostly at low temperatures, or when molecules condense around charged particles (electrons, protons, metal cations, molecular ions), producing ion molecule clusters. These clusters provide models for solvation, allow a pristine look at geometric as well as electronic structures of molecular complexes or matter in general, their interaction with radiation, their reactivity, their thermodynamic properties and, in particular, the related dynamics. This conference focuses on new ways to make clusters composed of different kinds of molecules, new experimental techniques to investigate the properties of the clusters and new theoretical methods with which to calculate the structures, dynamical motions and energetics of the clusters. Some of the main experimental methods employed include molecular beams, mass spectrometry, laser spectroscopy (from infrared to XUV; in the frequency as well as the time domain) and photoelectron spectroscopy. Techniques include laser absorption spectroscopy, laser induced fluorescence, resonance enhanced photoionization, mass-selected photodissociation, photofragment imaging, ZEKE photoelectron spectroscopy, etc. From the theoretical side, this conference highlights work on potential surfaces and …
Date: February 3, 2012
Creator: McCoy, Anne
System: The UNT Digital Library
Measurement of the $WZ$ Cross Section and Triple Gauge Couplings in $p \bar p$ Collisions at $\sqrt{s} = 1.96$ TeV (open access)

Measurement of the $WZ$ Cross Section and Triple Gauge Couplings in $p \bar p$ Collisions at $\sqrt{s} = 1.96$ TeV

This Letter describes the current most precise measurement of the WZ production cross section as well as limits on anomalous WWZ couplings at a center-of-mass energy of 1.96 TeV in proton-antiproton collisions. The WZ candidates are reconstructed from decays containing three charged leptons and missing energy from a neutrino, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector (7.1 fb{sup -1} of integrated luminosity), 64 candidate events are observed with the expected background contributing 8 {+-} 1 events. The measured total cross section {sigma}(p{bar p} {yields} WZ) = 3.93{sub -0.53}{sup +0.60}(stat){sub -0.46}{sup +0.59}(syst) pb is in good agreement with the standard model prediction of 3.50 {+-} 0.21. The same sample is used to set limits on anomalous WWZ couplings.
Date: February 1, 2012
Creator: Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A. et al.
System: The UNT Digital Library
Combined upper limit on Standard Model Higgs boson production at CDF (open access)

Combined upper limit on Standard Model Higgs boson production at CDF

The Higgs boson is the only elementary particle predicted by the Standard Model (SM) that has neither been confirmed nor refuted. The CDF collaboration has performed SM Higgs searches in many channels using p{bar p} collisions at a centre-of-mass energy {radical}s = 1.96 TeV. We present the latest combined Higgs boson search at CDF. Since the previous year's combination, the sensitivity is increased through the addition of new channels, the improvement of existing channels and the addition of new data samples. We also use the latest parton distribution functions and gg {yields} H theoretical cross sections when modelling the signal event yields. Using integrated luminosities of up to 8.2 fb{sup -1}, we observe a good agreement between data and the background prediction. Since we do not see a Higgs boson excess, we set 95% CL upper limits on the Higgs boson cross section in the range between 100 and 200 GeV/c{sup 2}, with 5 GeV/c{sup 2} increments. The observed (expected) limits for a 115 and a 165 GeV/c{sup 2} Higgs boson are 1.55 (1.49) and 0.75 (0.79) x SM, respectively. Since last year, the Higgs boson excluded range by CDF is extended to 156.5 - 173.7 and 100 - 104.5 …
Date: February 1, 2012
Creator: Adrian, Buzatu
System: The UNT Digital Library
From Nucleons To Nuclei To Fusion Reactions (open access)

From Nucleons To Nuclei To Fusion Reactions

Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.
Date: February 15, 2012
Creator: Quaglioni, S; Navratil, P; Roth, R & Horiuchi, W
System: The UNT Digital Library
Safeguards-By-Design: Guidance and Tools for Stakeholders (open access)

Safeguards-By-Design: Guidance and Tools for Stakeholders

Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, …
Date: February 1, 2012
Creator: Schanfein, Mark & Johnson, Shirley
System: The UNT Digital Library
Real-structure effects: Band gaps of Mg_xZn_{1-x}O, Cd_xZn_{1-x}O, and n-type ZnO from ab-initio calculations (open access)

Real-structure effects: Band gaps of Mg_xZn_{1-x}O, Cd_xZn_{1-x}O, and n-type ZnO from ab-initio calculations

Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical-absorption spectra (including excitonic effects) for several transparent conducting oxides. We discuss HSE+G{sub 0}W{sub 0} results for band structures, fundamental band gaps, and effective electron masses of MgO, ZnO, CdO, SnO{sub 2}, SnO, In{sub 2}O{sub 3}, and SiO{sub 2}. The Bethe-Salpeter equation is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G{sub 0}W{sub 0} approach and the solution of the Bethe-Salpeter equation are very well-suited to describe the electronic structure and the optical properties of various transparent conducting oxides in good agreement with experiment.
Date: February 15, 2012
Creator: Schleife, A & Bechstedt, F
System: The UNT Digital Library
Plasma-Accelerated Flyer-Plates for Equation of State Studies (open access)

Plasma-Accelerated Flyer-Plates for Equation of State Studies

None
Date: February 13, 2012
Creator: Fratanduono, D E; Smith, R F; Boehly, T R; Eggert, J H; Braun, D G & Collins, G W
System: The UNT Digital Library
Intense Super-radiant X-rays from a Compact Source using a Nanocathode Array and Emittance Exchange (open access)

Intense Super-radiant X-rays from a Compact Source using a Nanocathode Array and Emittance Exchange

A novel method of producing intense short wavelength radiation from relativistic electrons is described. The electrons are periodically bunched at the wavelength of interest enabling in-phase super-radiant emission that is far more intense than from unbunched electrons. The periodic bunching is achieved in steps beginning with an array of beamlets emitted from a nanoengineered field emission array. The beamlets are then manipulated and converted to a longitudinal density modulation via a transverse to longitudinal emittance exchange. Periodic bunching at short wavelength is shown to be possible, and the partially coherent x-ray properties produced by Inverse Compton scattering from an intense laser are estimated. The proposed method increases the efficiency of x-ray production by several orders of magnitude, potentially enabling compact x-ray sources to produce brilliance and flux similar to major synchrotron facilities.
Date: February 1, 2012
Creator: Graves, W. S.; Kaertner, F. X.; Moncton, D. E. & Piot, P.
System: The UNT Digital Library
EFFECTIVE POROSITY IMPLIES EFFECTIVE BULK DENSITY IN SORBING SOLUTE TRANSPORT (open access)

EFFECTIVE POROSITY IMPLIES EFFECTIVE BULK DENSITY IN SORBING SOLUTE TRANSPORT

The concept of an effective porosity is widely used in solute transport modeling to account for the presence of a fraction of the medium that effectively does not influence solute migration, apart from taking up space. This non-participating volume or ineffective porosity plays the same role as the gas phase in single-phase liquid unsaturated transport: it increases pore velocity, which is useful towards reproducing observed solute travel times. The prevalent use of the effective porosity concept is reflected by its prominent inclusion in popular texts, e.g., de Marsily (1986), Fetter (1988, 1993) and Zheng and Bennett (2002). The purpose of this commentary is to point out that proper application of the concept for sorbing solutes requires more than simply reducing porosity while leaving other material properties unchanged. More specifically, effective porosity implies the corresponding need for an effective bulk density in a conventional single-porosity model. The reason is that the designated non-participating volume is composed of both solid and fluid phases, both of which must be neglected for consistency. Said another way, if solute does not enter the ineffective porosity then it also cannot contact the adjoining solid. Conceptually neglecting the fluid portion of the non-participating volume leads to a …
Date: February 27, 2012
Creator: Flach, G.
System: The UNT Digital Library
AdS/QCD, Light-Front Holography, and Sublimated Gluons (open access)

AdS/QCD, Light-Front Holography, and Sublimated Gluons

The gauge/gravity duality leads to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian - 'Light-Front Holography', which provides a Lorentz-invariant first-approximation to QCD, and successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schroedinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable {zeta} in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons - the relativistic analogs of the Schroedinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence quarks, jet hadronization, and other hadronic observables. One thus obtains a one-parameter color-confining model for hadron physics at the amplitude level. AdS/QCD also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function with an infrared fixed point which agrees with the effective coupling a{sub g1} (Q{sup 2}) extracted …
Date: February 16, 2012
Creator: Brodsky, Stanley J. & de Teramond, Guy F.
System: The UNT Digital Library
SEQUESTRATION OF METALS IN ACTIVE CAP MATERIALS: A LABORATORY AND NUMERICAL EVALUATION (open access)

SEQUESTRATION OF METALS IN ACTIVE CAP MATERIALS: A LABORATORY AND NUMERICAL EVALUATION

Active capping involves the use of capping materials that react with sediment contaminants to reduce their toxicity or bioavailability. Although several amendments have been proposed for use in active capping systems, little is known about their long-term ability to sequester metals. Recent research has shown that the active amendment apatite has potential application for metals contaminated sediments. The focus of this study was to evaluate the effectiveness of apatite in the sequestration of metal contaminants through the use of short-term laboratory column studies in conjunction with predictive, numerical modeling. A breakthrough column study was conducted using North Carolina apatite as the active amendment. Under saturated conditions, a spike solution containing elemental As, Cd, Co, Se, Pb, Zn, and a non-reactive tracer was injected into the column. A sand column was tested under similar conditions as a control. Effluent water samples were periodically collected from each column for chemical analysis. Relative to the non-reactive tracer, the breakthrough of each metal was substantially delayed by the apatite. Furthermore, breakthrough of each metal was substantially delayed by the apatite compared to the sand column. Finally, a simple 1-D, numerical model was created to qualitatively predict the long-term performance of apatite based on the …
Date: February 13, 2012
Creator: Dixon, K. & Knox, A.
System: The UNT Digital Library
CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT (open access)

CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT

National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID …
Date: February 16, 2012
Creator: Haugh, M. J.; Charest, M. R.; Ross, P. W.; Lee, J. J.; Schneider, M. B.; Palmer, N. E. et al.
System: The UNT Digital Library
A VUV Photoionization Study of the Combustion-Relevant Reaction of the Phenyl Radical (C6H5) with Propylene (C3H6) in a High Temperature Chemical Reactor (open access)

A VUV Photoionization Study of the Combustion-Relevant Reaction of the Phenyl Radical (C6H5) with Propylene (C3H6) in a High Temperature Chemical Reactor

We studied the reaction of phenyl radicals (C6H5) with propylene (C3H6) exploiting a high temperature chemical reactor under combustion-like conditions (300 Torr, 1,200-1,500 K). The reaction products were probed in a supersonic beam by utilizing tunable vacuum ultraviolet (VUV) radiation from the Advanced Light Source and recording the photoionization efficiency (PIE) curves at mass-to-charge ratios of m/z = 118 (C9H10+) and m/z = 104 (C8H8+). Our results suggest that the methyl and atomic hydrogen losses are the two major reaction pathways with branching ratios of 86 10 percent and 14 10 percent. The isomer distributions were probed by fitting the recorded PIE curves with a linear combination of the PIE curves of the individual C9H10 and C8H8 isomers. Styrene (C6H5C2H3) was found to be the exclusive product contributing to m/z = 104 (C8H8+), whereas 3-phenylpropene, cis-1-phenylpropene, and 2-phenylpropene with branching ratios of 96 4 percent, 3 3 percent, and 1 1 percent could account for signal at m/z = 118 (C9H10+). Although searched for carefully, no evidence of the bicyclic indane molecule could be provided. The reaction mechanisms and branching ratios are explained in terms of electronic structure calculations nicely agreeing with a recent crossed molecular beam study on this …
Date: February 22, 2012
Creator: Manoa, University of Hawaii at; Laboratories, Sandia National; Zhang, Fangtong; Kaiser, Ralf I.; Golan, Amir; Ahmed, Musahid et al.
System: The UNT Digital Library
NARAC Modeling During the Response to the Fukushima Dai-ichi Nuclear Power Plant Emergency (open access)

NARAC Modeling During the Response to the Fukushima Dai-ichi Nuclear Power Plant Emergency

This paper summarizes the activities of the National Atmospheric Release Advisory Center (NARAC) during the Fukushima Dai-ichi nuclear power plant crisis. NARAC provided a wide range of products and analyses as part of its support including: (1) Daily Japanese weather forecasts and hypothetical release (generic source term) dispersion predictions to provide situational awareness and inform planning for U.S. measurement data collection and field operations; (2) Estimates of potential dose in Japan for hypothetical scenarios developed by the Nuclear Regulatory Commission (NRC) to inform federal government considerations of possible actions that might be needed to protect U.S. citizens in Japan; (3) Estimates of possible plume arrival times and dose for U.S. locations; and (4) Plume model refinement and source estimation based on meteorological analyses and available field data. The Department of Energy/National Nuclear Security Administration (DOE/NNSA) deployed personnel to Japan and stood up 'home team' assets across the DOE complex to aid in assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. The DOE Nuclear Incident Team (NIT) coordinated response activities, while DOE personnel provided predictive modeling, air and ground monitoring, sample collection, laboratory analysis, and data assessment and interpretation. DOE deployed the Aerial Measuring System (AMS), …
Date: February 14, 2012
Creator: Sugiyama, G.; Nasstrom, J. S.; Probanz, B.; Foster, K. T.; Simpson, M.; Vogt, P. et al.
System: The UNT Digital Library
Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas (open access)

Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas

The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and (4) Reduced energy costs. The goals of the Hydrogen from Coal Program are: (1) Prove the feasibility of a 40% efficient, near zero emissions IGCC plant that uses membrane separation technology and other advanced technologies to reduce the cost of electricity by at least 35%; and (2) Develop H{sub 2} production and processing technologies that will contribute {approx}3% in improved efficiency and 12% reduction in cost of electricity.
Date: February 26, 2012
Creator: Dogan, O. N.; Howard, B. H. & Alman, D. E.
System: The UNT Digital Library
Electron Anomalous Magnetic Moment in Basis Light-Front Quantization Approach (open access)

Electron Anomalous Magnetic Moment in Basis Light-Front Quantization Approach

We apply the Basis Light-Front Quantization (BLFQ) approach to the Hamiltonian field theory of Quantum Electrodynamics (QED) in free space. We solve for the mass eigenstates corresponding to an electron interacting with a single photon in light-front gauge. Based on the resulting non-perturbative ground state light-front amplitude we evaluate the electron anomalous magnetic moment. The numerical results from extrapolating to the infinite basis limit reproduce the perturbative Schwinger result with relative deviation less than 1.2%. We report significant improvements over previous works including the development of analytic methods for evaluating the vertex matrix elements of QED.
Date: February 17, 2012
Creator: Zhao, Xingbo; Honkanen, Heli; Maris, Pieter; Vary, James P. & Brodsky, Stanley J.
System: The UNT Digital Library
Impact of Transmission on Resource Adequacy in Systems with Wind and Solar Power: Preprint (open access)

Impact of Transmission on Resource Adequacy in Systems with Wind and Solar Power: Preprint

Variable generation is on track to become a significant contributor to electric power systems worldwide. Thus, it is important to analyze the effect that renewables will have on the reliability of systems. In this paper we present a new tool being implemented at the National Renewable Energy Laboratory, which allows the inclusion of variable generation in the power system resource adequacy. The tool is used to quantify the potential contribution of transmission to reliability in highly interconnected systems and an example is provided using the Western Interconnection footprint.
Date: February 1, 2012
Creator: Ibanez, E. & Milligan, M.
System: The UNT Digital Library
Visualization of Target Inspection data at the National Ignition Facility (open access)

Visualization of Target Inspection data at the National Ignition Facility

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.
Date: February 16, 2012
Creator: Potter, D & Antipa, N
System: The UNT Digital Library
Transversity from First Principles in QCD (open access)

Transversity from First Principles in QCD

Transversity observables, such as the T-odd Sivers single-spin asymmetry measured in deep inelastic lepton scattering on polarized protons and the distributions which are measured in deeply virtual Compton scattering, provide important constraints on the fundamental quark and gluon structure of the proton. In this talk I discuss the challenge of computing these observables from first principles; i.e.; quantum chromodynamics, itself. A key step is the determination of the frame-independent light-front wavefunctions (LFWFs) of hadrons - the QCD eigensolutions which are analogs of the Schroedinger wavefunctions of atomic physics. The lensing effects of initial-state and final-state interactions, acting on LFWFs with different orbital angular momentum, lead to T-odd transversity observables such as the Sivers, Collins, and Boer-Mulders distributions. The lensing effect also leads to leading-twist phenomena which break leading-twist factorization such as the breakdown of the Lam-Tung relation in Drell-Yan reactions. A similar rescattering mechanism also leads to diffractive deep inelastic scattering, as well as nuclear shadowing and non-universal antishadowing. It is thus important to distinguish 'static' structure functions, the probability distributions computed the target hadron's light-front wavefunctions, versus 'dynamical' structure functions which include the effects of initial- and final-state rescattering. I also discuss related effects such as the J = …
Date: February 16, 2012
Creator: Brodsky, Stanley J. & /SLAC /Southern Denmark U., CP3-Origins
System: The UNT Digital Library
Ensemble Properties of Comets in the Sloan Digital Sky Survey (open access)

Ensemble Properties of Comets in the Sloan Digital Sky Survey

We present the ensemble properties of 31 comets (27 resolved and 4 unresolved) observed by the Sloan Digital Sky Survey (SDSS). This sample of comets represents about 1 comet per 10 million SDSS photometric objects. Five-band (u, g, r, i, z) photometry is used to determine the comets colors, sizes, surface brightness profiles, and rates of dust production in terms of the Afp formalism. We find that the cumulative luminosity function for the Jupiter Family Comets in our sample is well fit by a power law of the form N(<H) {proportional_to} 10{sup (0.49{+-}0.05)H} for H < 18, with evidence of a much shallower fit N(<H) {proportional_to} 10{sup (0.19{+-}0.03)H} for the faint (14.5 < H < 18) comets. The resolved comets show an extremely narrow distribution of colors (0.57 {+-} 0.05 in g - r for example), which are statistically indistinguishable from that of the Jupiter Trojans. Further, there is no evidence of correlation between color and physical, dynamical, or observational parameters for the observed comets.
Date: February 1, 2012
Creator: Solontoi, Michael; Ivezic, Zeljko; Juric, Mario; Becker, Andrew C.; Jones, Lynne; West, Andrew A. et al.
System: The UNT Digital Library
$B_s\to D_s/B\to D$ Semileptonic Form-Factor Ratios and Their Application to BR($B^0_s\to \mu^+\mu^-$) (open access)

$B_s\to D_s/B\to D$ Semileptonic Form-Factor Ratios and Their Application to BR($B^0_s\to \mu^+\mu^-$)

We calculate form-factor ratios between the semileptonic decays {bar B}{sup 0} {yields} D{sup +} {ell}{sup -}{bar {nu}} and {bar B}{sub s}{sup 0} {yields} D{sub s}{sup +}{ell}{sup -}{bar {nu}} with lattice QCD. These ratios are a key theoretical input in a new strategy to determine the fragmentation fractions of the neutral B decays, which are needed for measurements of BR(B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -}). They use the MILC ensembles of gauge configurations with 2 + 1 flavors of sea quarks at two lattice spacings of approximately 0.12 fm and 0.09 fm. We use the model-independent z parametrization to extrapolate their simulation results at small recoil toward maximum recoil. The results for the form-factor ratios are {line_integral}{sub 0}{sup (s)} (M{sub {pi}}{sup 2})/{line_integral}{sub 0}{sup (d)} (M{sub K}{sup 2}) = 1.046(44){sub stat.}(15){sub syst.} and {line_integral}{sub 0}{sup (s)} (M{sub {pi}}{sup 2})/{line_integral}{sub 0}{sup (d)} (M{sub {pi}}{sup 2}) = 1.054(47){sub stat.}(17){sub syst.}. In contrast to a QCD sum-rule calculation, no significant departure from U-spin (d {leftrightarrow} s) symmetry is observed.
Date: February 1, 2012
Creator: Bailey, Jon A.; Bazavov, A.; Bernard, C.; Bouchard, C. M.; DeTar, C.; Du, Daping et al.
System: The UNT Digital Library