120 Matching Results

Results open in a new window/tab.

New England Wind Energy Education Project (NEWEEP) (open access)

New England Wind Energy Education Project (NEWEEP)

Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with …
Date: April 25, 2012
Creator: Grace, Robert C.; Craddock, Kathryn A. & von Allmen, Daniel R.
System: The UNT Digital Library
Yearly Technical Report for DE-FG02-03ER46026 (open access)

Yearly Technical Report for DE-FG02-03ER46026

We propose a unique, all-electron, thermodynamic density functional theory (DFT) code that directly predicts full or partial long-range order in crystalline (defected) solids and their effect on electronic properties via a first-principles mean-field theory, scales linear with number of atoms N per unit-cell [i.e. O(N), due to use of a mathematical-based screening in k-space], and addresses up to 1 million atoms using parallel architectures. Novel O(N) algorithms will be developed to permit this for an all-electron KKR Green's functional density-functional theory code.
Date: May 25, 2012
Creator: Johnson, Duane D.
System: The UNT Digital Library
Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011. (open access)

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.
Date: April 25, 2012
Creator: Director), (Office of The
System: The UNT Digital Library
Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010. (open access)

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.
Date: April 25, 2012
Creator: Director), (Office of The
System: The UNT Digital Library
Low Cost Thin Film Building-Integrated Photovoltaic Systems (open access)

Low Cost Thin Film Building-Integrated Photovoltaic Systems

The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. …
Date: May 25, 2012
Creator: Guha, Dr. Subhendu & Yang, Dr. Jeff
System: The UNT Digital Library
Explicit Formulas for 2nd-Order Driving Terms Due to Sextupoles and Chromatic Effects of Quadrupoles. (open access)

Explicit Formulas for 2nd-Order Driving Terms Due to Sextupoles and Chromatic Effects of Quadrupoles.

Optimization of nonlinear driving terms have become a useful tool for designing storage rings, especially modern light sources where the strong nonlinearity is dominated by the large chromatic effects of quadrupoles and strong sextupoles for chromaticity control. The Lie algebraic method is well known for computing such driving terms. However, it appears that there was a lack of explicit formulas in the public domain for such computation, resulting in uncertainty and/or inconsistency in widely used codes. This note presents explicit formulas for driving terms due to sextupoles and chromatic effects of quadrupoles, which can be considered as thin elements. The computation is accurate to the 4th-order Hamiltonian and 2nd-order in terms of magnet parameters. The results given here are the same as the APS internal note AOP-TN-2009-020. This internal nte has been revised and published here as a Light Source Note in order to get this information into the public domain, since both ELEGANT and OPA are using these formulas.
Date: April 25, 2012
Creator: Wang, C-X. (Accelerator Systems Division (APS))
System: The UNT Digital Library
Final Report DOE Award # DE-FG02-05ER46218, Texas Tech University: "Cyclic Macromolecules: Dynamics and Nonlinear Rheology" (open access)

Final Report DOE Award # DE-FG02-05ER46218, Texas Tech University: "Cyclic Macromolecules: Dynamics and Nonlinear Rheology"

The work described in the present report had the original goal to produce large, entangled, ring polymers that were uncontaminated by linear chains and to characterize by rheological methods the dynamics of these rings. While the work fell short of this specific goal, the outcomes of the research performed under support from this grant provided novel macromolecular synthesis methods, new separation methods for ring and linear chains, and novel rheological data on bottle brush polymers, wedge polymers and dendron-based ring molecules. The grant funded a total of 8 archival manuscripts and one patent, all of which are attached to the present report.
Date: April 25, 2012
Creator: McKenna, Gregory B.; Grubbs, Robert H. & Kornfield, Julia A.
System: The UNT Digital Library
Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm (open access)

Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm

This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads on the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, …
Date: January 25, 2012
Creator: Wharton, S; Lundquist, J K & Marjanovic, N
System: The UNT Digital Library
Cerium Doped LSO/LYSO Crystal Development for future High Energy Physics Experiments (open access)

Cerium Doped LSO/LYSO Crystal Development for future High Energy Physics Experiments

Because of their high stopping power and fast and bright scintillation, cerium doped LSO and LYSO crystals have attracted a broad interest in the physics community pursuing precision electromagnetic calorimeter for future high energy physics experiments. Their excellent radiation hardness against gamma-rays, neutrons and charged hadrons also makes them a preferred material for calorimeters to be operated in a severe radiation environment, such as the HL-LHC. An effort was made at SIPAT to grow 25 X{sub 0} (28 cm) long LYSO crystals for high energy physics applications. In this paper, the optical and scintillation properties and its radiation hardness against gamma-ray irradiations up to 1 Mrad are presented for the first 2.5 X 2.5 X 28 cm LYSO sample. An absorption band was found at the seed end of this sample and three other 20 cm long samples, which was traced back to a bad seed crystal used in the corresponding crystal growth process. Significant progresses in optical and scintillation properties were achieved for large size LYSO crystals after eliminating this absorption band.
Date: March 25, 2012
Creator: Zhu, Ren-Yuan
System: The UNT Digital Library
HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX (open access)

HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX

Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after {approx}4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient …
Date: April 25, 2012
Creator: Kyser, E. & King, W.
System: The UNT Digital Library
Nevada National Security Site-Directed Research and Development FY 2011 Annual Report (open access)

Nevada National Security Site-Directed Research and Development FY 2011 Annual Report

This fiscal year 2011 annual report of the Site-Directed Research and Development program, the 10th anniversary edition, recognizes a full decade of innovative R&D accomplishments in support of the Nevada National Security Site (NNSS). Last year the NNSS itself was renamed to reflect a diversifying mission, and our R&D program has contributed significantly to shape emerging missions that will continue to evolve. New initiatives in stockpile stewardship science, nonproliferation, and treaty verification and monitoring have had substantial successes in FY 2011, and many more accomplishments are expected. SDRD is the cornerstone on which many of these initiatives rest. Historically supporting our main focus areas, SDRD is also building a solid foundation for new, and non-traditional, emerging national security missions. The program continues its charter to advance science and technology for a broad base of agencies including the U.S. Department of Energy (DOE), U.S. Department of Defense (DoD), U.S. Department of Homeland Security (DHS), and many others.
Date: April 25, 2012
Creator: Howard Bender, comp.
System: The UNT Digital Library
Understanding Nitrogen Fixation (open access)

Understanding Nitrogen Fixation

The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution …
Date: May 25, 2012
Creator: Chirik, Paul J.
System: The UNT Digital Library
Using Downhole Probes to Locate and Characterize Buried Transuranic and Mixed Low Level Waste (open access)

Using Downhole Probes to Locate and Characterize Buried Transuranic and Mixed Low Level Waste

Borehole logging probes were developed and tested to locate and quantify transuranic elements in subsurface disposal areas and in contaminated sites at USDOE Weapons Complex sites. A new method of measuring very high levels of chlroine in the subsurface was developed using pulsed neutron technology from oilfield applications. The probes were demonstrated at the Hanford site in wells containing plutonium and other contaminants.
Date: June 25, 2012
Creator: Steinman, Donald K; Bramblett, Richard L & Hertzog, Russel C
System: The UNT Digital Library
Clearwater and Wineskin Sub-CAU Flow and Transport Models (open access)

Clearwater and Wineskin Sub-CAU Flow and Transport Models

None
Date: July 25, 2012
Creator: Carle, S F
System: The UNT Digital Library
SULFUR HEXAFLUORIDE TREATMENT OF USED NUCLEAR FUEL TO ENHANCE SEPARATIONS (open access)

SULFUR HEXAFLUORIDE TREATMENT OF USED NUCLEAR FUEL TO ENHANCE SEPARATIONS

Reactive Gas Recycling (RGR) technology development has been initiated at Savannah River National Laboratory (SRNL), with a stretch-goal to develop a fully dry recycling technology for Used Nuclear Fuel (UNF). This approach is attractive due to the potential of targeted gas-phase treatment steps to reduce footprint and secondary waste volumes associated with separations relying primarily on traditional technologies, so long as the fluorinators employed in the reaction are recycled for use in the reactors or are optimized for conversion of fluorinator reactant. The developed fluorination via SF{sub 6}, similar to the case for other fluorinators such as NF{sub 3}, can be used to address multiple fuel forms and downstream cycles including continued processing for LWR via fluorination or incorporation into a aqueous process (e.g. modified FLUOREX) or for subsequent pyro treatment to be used in advanced gas reactor designs such metal- or gas-cooled reactors. This report details the most recent experimental results on the reaction of SF{sub 6} with various fission product surrogate materials in the form of oxides and metals, including uranium oxides using a high-temperature DTA apparatus capable of temperatures in excess of 1000{deg}C . The experimental results indicate that the majority of the fission products form stable …
Date: September 25, 2012
Creator: Gray, J.; Torres, R.; Korinko, P.; Martinez-Rodriguez, M.; Becnel, J.; Garcia-Diaz, B. et al.
System: The UNT Digital Library
Elementary Particle Physics at Baylor (Final Report) (open access)

Elementary Particle Physics at Baylor (Final Report)

This report summarizes the activities of the Baylor University Experimental High Energy Physics (HEP) group on the Collider Detector at Fermilab (CDF) experiment from August 15, 2005 to May 31, 2012. Led by the Principal Investigator (Dr. Jay R. Dittmann), the Baylor HEP group has actively pursued a variety of cutting-edge measurements from proton-antiproton collisions at the energy frontier.
Date: August 25, 2012
Creator: Dittmann, J.R.
System: The UNT Digital Library
Rare Plant Monitoring and Restoration at the Lawrence Livermore National Laboratory Experimental Test Site, Site 300, Project Progress Report 2007 through 2011 (open access)

Rare Plant Monitoring and Restoration at the Lawrence Livermore National Laboratory Experimental Test Site, Site 300, Project Progress Report 2007 through 2011

None
Date: September 25, 2012
Creator: Carlsen, T M; Paterson, L E; Alfaro, T M & Gregory, S D
System: The UNT Digital Library
Reliable, Lightweight Transmissions For Off-Shore, Utility Scale Wind Turbines (open access)

Reliable, Lightweight Transmissions For Off-Shore, Utility Scale Wind Turbines

The objective of this project was to reduce the technical risk for a hydrostatic transmission based drivetrain for high-power utility-size wind turbines. A theoretical study has been performed to validate the reduction of cost of energy (CoE) for the wind turbine, identify risk mitigation strategies for the drive system and critical components, namely the pump, shaft connection and hydrostatic transmission (HST) controls and address additional benefits such as reduced deployment costs, improved torque density and improved mean time between repairs (MTBR).
Date: October 25, 2012
Creator: Ossyra, Jean-Claude
System: The UNT Digital Library
Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings (open access)

Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.
Date: July 25, 2012
Creator: Pope, Jason E.
System: The UNT Digital Library
Final Technical Report (open access)

Final Technical Report

This program applied reservoir cathode technology to increase the lifetime of cesiated tungsten photocathodes. Cesiated tungsten photocathodes provide a quantum efficiency of approximately 0.08% when cesium is initially applied to the surface. During operation, however, the cesium evaporates from the surface, resulting in a gradual decrease in quantum efficiency. After 4-6 hours of operation, the efficiency drop to below useful levels, requiring recoating on the emission surface. This program developed a cathode geometry where cesium could be continuously diffused to the surface at a rate matching the evaporation rate. This results in constant current emission until the cesium in the reservoir is depleted. Measurements of the evaporation rate indicated that the reservoir should provide cesium for more than 30,000 hours of continuous operation. This is orders of magnitude longer operation then previously available. Experiments also demonstrated that the photocathode could be rejuvenated following contamination from a vacuum leak. Recoating of the emission surface demonstrated that the initial quantum efficiency could be recovered.
Date: September 25, 2012
Creator: Ives, Lawrence; Montgomery, Eric; Pan, Zhigang; Riddick, Blake; Feldman, Donald & Falce, Lou
System: The UNT Digital Library
Inhibition Of Washed Sludge With Sodium Nitrite (open access)

Inhibition Of Washed Sludge With Sodium Nitrite

This report describes the results of electrochemical tests used to determine the relationship between the concentration of the aggressive anions in washed sludge and the minimum effective inhibitor concentration. Sodium nitrate was added as the inhibitor because of its compatibility with the DWPF process. A minimum of 0.05M nitrite is required to inhibit the washed sludge simulant solution used in this study. When the worst case compositions and safety margins are considered, it is expected that a minimum operating limit of nearly 0.1M nitrite will be specified. The validity of this limit is dependent on the accuracy of the concentrations and solubility splits previously reported. Sodium nitrite additions to obtain 0.1M nitrite concentrations in washed sludge will necessitate the additional washing of washed precipitate in order to decrease its sodium nitrite inhibitor requirements sufficiently to remain below the sodium limits in the feed to the DWPF. Nitrite will be the controlling anion in "fresh" washed sludge unless the soluble chloride concentration is about ten times higher than predicted by the solubility splits. Inhibition of "aged" washed sludge will not be a problem unless significant chloride dissolution occurs during storage. It will be very important tomonitor the composition of washed sludge …
Date: September 25, 2012
Creator: Congdon, J. W. & Lozier, J. S.
System: The UNT Digital Library
Development and Testing of a 212Pb/212Bi Peptide for Targeting Metastatic Melanoma (open access)

Development and Testing of a 212Pb/212Bi Peptide for Targeting Metastatic Melanoma

The purpose of this project is to develop a new radiolabeled peptide for imaging and treating metastatic melanoma. The immunoconjugate consists of a receptor-specific peptide that targets melanoma cells. The beta-emitter lead-212 (half-life = 10.4 hours) is linked by coordination chemistry to the peptide. After injection, the peptide targets melanoma receptors on the surfaces of melanoma cells. Lead-212 decays to the alpha-emitter bismuth-212 (half-life = 60 minutes). Alpha-particles that hit melanoma cell nuclei are likely to kill the melanoma cell. For cancer cell imaging, the lead-212 is replaced by lead-203 (half-life = 52 hours). Lead-203 emits 279 keV photons (80.1% abundance) that can be imaged and measured for biodistribution analysis, cancer imaging, and quantitative dosimetry.
Date: October 25, 2012
Creator: Fisher, Darrell R.
System: The UNT Digital Library
The Hamiltonian Structure and Euler-Poincare Formulation of the Valsov-Maxwell and Gyrokinetic System (open access)

The Hamiltonian Structure and Euler-Poincare Formulation of the Valsov-Maxwell and Gyrokinetic System

We present a new variational principle for the gyrokinetic system, similar to the Maxwell-Vlasov action presented in Ref. 1. The variational principle is in the Eulerian frame and based on constrained variations of the phase space fluid velocity and particle distribution function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian structure of the system. This is carried out with the Dirac theory of constraints, which is used to construct meaningful brackets from those obtained directly from Euler-Poincare theory. Possible applications of these formulations include continuum geometric integration techniques, large-eddy simulation models and Casimir type stability methods. __________________________________________________
Date: September 25, 2012
Creator: Squire, J.; Qin, H. & Tang, W. M.
System: The UNT Digital Library
A Class Of Generalized Kapchinskij-Vladimirskij Solutions And Associated Envelope Equations For High-intensity Charged Particle Beams (open access)

A Class Of Generalized Kapchinskij-Vladimirskij Solutions And Associated Envelope Equations For High-intensity Charged Particle Beams

A class of generalized Kapchinskij-Vladimirskij solutions of the nonlinear Vlasov-Maxwell equations and the associated envelope equations for high-intensity beams in a periodic lattice is derived. It includes the classical Kapchinskij-Vladimirskij solution as a special case. For a given lattice, the distribution functions and the envelope equations are specified by eight free parameters. The class of solutions derived captures a wider range of dynamical envelope behavior for high-intensity beams, and thus provides a new theoretical tool to investigate the dynamics of high-intensity beams.
Date: April 25, 2012
Creator: Qin, Hong & Davidson, Ronald C.
System: The UNT Digital Library