Separating the Minor Actinides Through Advances in Selective Coordination Chemistry (open access)

Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.
Date: August 22, 2012
Creator: Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I. & Carter, Jennifer C.
System: The UNT Digital Library
Summary Report for the Radiation Detection for Nuclear Security Summer School 2012 (open access)

Summary Report for the Radiation Detection for Nuclear Security Summer School 2012

The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the inaugural Radiation Detection for Nuclear Security Summer School from June 11 – 22, 2012. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. The first week of the summer school focused on the foundational knowledge required by technology practitioners; the second week focused on contemporary applications. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security.
Date: August 22, 2012
Creator: Runkle, Robert C.; Baciak, James E. & Stave, Jean A.
System: The UNT Digital Library
Foundations of Feature Selection and Classification for Non-Gaussian Distributed Targets (open access)

Foundations of Feature Selection and Classification for Non-Gaussian Distributed Targets

None
Date: August 22, 2012
Creator: Clark, G. A.
System: The UNT Digital Library
LAB-SCALE DEMONSTRATION OF PLUTONIUM PURIFICATION BY ANION EXCHANGE, PLUTONIUM (IV) OXALATE PRECIPITATION, AND CALCINATION TO PLUTONIUM OXIDE TO SUPPORT THE MOX FEED MISSION (open access)

LAB-SCALE DEMONSTRATION OF PLUTONIUM PURIFICATION BY ANION EXCHANGE, PLUTONIUM (IV) OXALATE PRECIPITATION, AND CALCINATION TO PLUTONIUM OXIDE TO SUPPORT THE MOX FEED MISSION

H-Canyon and HB-Line are tasked with the production of PuO{sub 2} from a feed of plutonium metal. The PuO{sub 2} will provide feed material for the MOX Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, the solution will be transferred to HB-Line for purification by anion exchange. Subsequent unit operations include Pu(IV) oxalate precipitation, filtration and calcination to form PuO{sub 2}. This report details the results from SRNL anion exchange, precipitation, filtration, calcination, and characterization tests, as requested by HB-Line1 and described in the task plan. This study involved an 80-g batch of Pu and employed test conditions prototypical of HB-Line conditions, wherever feasible. In addition, this study integrated lessons learned from earlier anion exchange and precipitation and calcination studies. H-Area Engineering selected direct strike Pu(IV) oxalate precipitation to produce a more dense PuO{sub 2} product than expected from Pu(III) oxalate precipitation. One benefit of the Pu(IV) approach is that it eliminates the need for reduction by ascorbic acid. The proposed HB-Line precipitation process involves a digestion time of 5 minutes after the time (44 min) required for oxalic acid addition. These were the conditions during HB-line production of neptunium oxide (NpO{sub 2}). In addition, a series …
Date: August 22, 2012
Creator: Crowder, M. & Pierce, R.
System: The UNT Digital Library
Response to Comment on "Geometric Phase of the Gyromotion for Charged Particles in a Time-dependent Magnetic Field (open access)

Response to Comment on "Geometric Phase of the Gyromotion for Charged Particles in a Time-dependent Magnetic Field

The reformulation of our analysis on the geometric phase of the gyromotion [J. Liu and H. Qin, Phys. Plasmas 18, 072505 (2011)] in terms of spatial angles presented in the comment by Brizard and Guillebon is interesting and correct. The subtlety of whether the adiabatic term associated with the long term average of the variation of pitch angle completely disappears after the gyrophase average is related to where valid approximations are applied. But it has no impact on the main conclusions.
Date: August 22, 2012
Creator: Qin, Jian Liu and Hong
System: The UNT Digital Library
Experimental Results for SimFuels (open access)

Experimental Results for SimFuels

Assessing the performance of Spent (or Used) Nuclear Fuel (UNF) in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water that may increase the waste form degradation rate and change radionuclide behavior. To study UNF, we have been working on producing synthetic UO2 ceramics, or SimFuels that can be used in testing and which will contain specific radionuclides or non-radioactive analogs so that we can test the impact of radiolysis on fuel corrosion without using actual spent fuel. Although, testing actual UNF would be ideal for understanding the long term behavior of UNF, it requires the use of hot cells and is extremely expensive. In this report, we discuss, factors influencing the preparation of SimFuels and the requirements for dopants to mimic the …
Date: August 22, 2012
Creator: Buck, Edgar C.; Casella, Andrew M.; Skomurski, Frances N.; MacFarlan, Paul J.; Soderquist, Chuck Z.; Wittman, Richard S. et al.
System: The UNT Digital Library
ZeCalc Algorithm Details (open access)

ZeCalc Algorithm Details

None
Date: August 22, 2012
Creator: Bond, K. C.; Smith, J. A.; Treuer, J. N.; Azevedo, S. G.; Kallman, J. S. & Martz, H. E.
System: The UNT Digital Library