Modeling Transition Metal Chemistry for Catalytic Functionalization of Molecules (open access)

Modeling Transition Metal Chemistry for Catalytic Functionalization of Molecules

The diversity of transition metal complexes allows for a wide range of chemical processes to be mediated by the metal, from catalysis to surface chemistry. Investigations into the structure and electronic configuration of transition metal complexes allow for tuning of desired species by modifications to the ligands and/or metals to achieve more efficient thermodynamics and kinetics for the process of interest. Transition metals, often used in catalysts for a number of important processes, require detailed descriptions of intermediates, transition states and products to fully characterize a reaction mechanism(s) in order to design more active and efficient catalysts. Computational investigations into inorganic catalysts are explored with the aim of understanding the activity of each species and how modifications of supporting ligands, co-ligands and metals vary the interaction along the reaction pathway. Reported results give important insight into the development of the most active complexes in addition to determining the least active complexes to aid experimental development. This report first investigates the mechanisms of two unique transfer reactions: 1) formation of low coordinate nickel-nitrene ((P~P)Ni=NR; P~P = 1,2-bis(dihydrophosphino)-ethane or 1,2-bis(difluoromethylphosphino)-ethane) complexes as catalysts for nitrogen atom transfer and 2) oxidation of a triphosphorus niobium complex, [(η2-P3SnPh3)Nb(OMe)3], for the transfer of the phosphorus …
Date: August 2011
Creator: Morello, Glenn
System: The UNT Digital Library
Design and Development of Soft Landing Ion Mobility: A Novel Instrument for Preparative Material Development (open access)

Design and Development of Soft Landing Ion Mobility: A Novel Instrument for Preparative Material Development

The design and fabrication of a novel soft landing instrument Soft Landing Ion Mobility (SLIM) is described here. Topics covered include history of soft landing, gas phase mobility theory, the design and fabrication of SLIM, as well as applications pertaining to soft landing. Principle applications devised for this instrument involved the gas phase separation and selection of an ionized component from a multicomponent gas phase mixture as combing technique to optimize coatings, catalyst, and a variety of alternative application in the sciences.
Date: August 2011
Creator: Davila, Stephen Juan
System: The UNT Digital Library
Photophysics and Photochemistry of Copper(I) Phosphine and Collidine Complexes: An Experimental/Theoretical Investigation (open access)

Photophysics and Photochemistry of Copper(I) Phosphine and Collidine Complexes: An Experimental/Theoretical Investigation

Copper(I) complexes have been studied through both experimental and computational means in the presented work. Overall, the work focuses on photophysical and photochemical properties of copper(I) complexes. Photophysical and photochemical properties are found to be dependent on the geometries of the copper(I) complexes. One of the geometric properties that are important for both photochemical and photophysical properties is coordination number. Coordination numbers have been observed to be dependent on both ligand size and recrystallization conditions. The complexes geometric structure, as well as the electronic effects of the coordination ligands, is shown both computationally as well as experimentally to affect the emission energies. Two-coordinate complexes are seen to have only weak emission at liquid nitrogen temperature (77 K), while at room temperature (298 K) the two-coordinate complexes are not observed to be luminescent. Three-coordinate complexes are observed to be luminescent at liquid nitrogen temperature as well as at room temperature. The three-coordinate complexes have a Y-shaped ground (S0) state that distorts towards a T-shape upon photoexcitation to the lowest lying phosphorescent state (T1). The geometric distortion is tunable by size of the coordinating ligand. Luminescence is controllable by limiting the amount of non-radiative emission. One manner by which non-radiative emission is …
Date: August 2011
Creator: Determan, John J.
System: The UNT Digital Library
Advancements in Instrumentation for Fourier Transform Microwave Spectroscopy (open access)

Advancements in Instrumentation for Fourier Transform Microwave Spectroscopy

The efforts of my research have led to the successful construction of several instruments that have helped expand the field of microwave spectroscopy. The classic Balle-Flygare spectrometer has been modified to include two different sets of antenna to operate in the frequency ranges 6-18 GHz and 18-26 GHz, allowing it to function for a large range without having to break vacuum. This modified FTMW instrument houses two low noise amplifiers in the vacuum chamber to allow for the LNAs to be as close to the antenna as physically possible, improving sensitivity. A new innovative Balle-Flygare type spectrometer, the efficient low frequency FTMW, was conceived and built to operate at frequencies as low as 500 MHz through the use of highly curved mirrors. This is new for FTMW techniques that normally operate at 4 GHz or higher with only a few exceptions around 2 GHz. The chirped pulse FTMW spectrometer uses horn antennas to observe spectra that span 2 GHz versus the standard 1 MHz of a cavity technique. This instrument decreases the amount of time to obtain a large spectral region of relative correct intensity molecular transitions. A Nd:YAG laser ablation apparatus was attached to the classic Balle-Flygare and chirped …
Date: August 2011
Creator: Dewberry, Christopher Thomas
System: The UNT Digital Library
Cu Electrodeposition on Ru-Ta and Corrosion of Plasma Treated Cu in Post Etch Cleaning Solution (open access)

Cu Electrodeposition on Ru-Ta and Corrosion of Plasma Treated Cu in Post Etch Cleaning Solution

In this work, the possibility of Cu electrodeposition on Ru-Ta alloy thin films is explored. Ru and Ta were sputter deposited on Si substrate with different composition verified by RBS. Four point probe, XRD, TEM and AFM were used to study the properties of Ru-Ta thin films such as sheet resistance, crystallinity, grain size, etc. Cyclic voltammetry is used to study the Cu electrodeposition characteristics on Ru-Ta after various surface pretreatments. The results provide insights on the removal of Ta oxide such that it enables better Cu nucleation and adhesion. Bimetallic corrosion of Cu on modified Ru-Ta surface was studied in CMP related chemicals. In Cu interconnect fabrication process, the making of trenches and vias on low-k dielectric films involves the application of fluorocarbon plasma etch gases. Cu microdots deposited on Ru and Ta substrate were treated by fluorocarbon plasma etch gases such as CF4, CF4+O2, CH2F2, C4F8 and SF6 and investigated by using x-ray photoelectron spectroscopy, contact angle measurement and electrochemical techniques. Micropattern corrosion screening technique was used to measure the corrosion rate of plasma treated Cu. XPS results revealed different surface chemistry on Cu after treating with plasma etching. The fluorine/carbon ratio of the etching gases results in …
Date: August 2011
Creator: Sundararaju Meenakshiah Pillai, Karthikeyan
System: The UNT Digital Library
Computational Investigation of Molecular Optoelectronic and Biological Systems (open access)

Computational Investigation of Molecular Optoelectronic and Biological Systems

The scope of work in this dissertation has comprised several major investigations on applications and theoretical studies of ab initio quantum mechanics and density functional theory where those techniques were applied to the following: (i) investigation of the performance of density functionals for the computations of molecular properties of 3d transition metal containing systems; (ii) guidance for experimental groups for rational design of macrometallocyclic multinuclear complexes with superior π-acidity and π-basicity that are most suitable for p- and n-type semiconductors of metal-organic molecules and nanomaterials; (iii) investigation of the metallo-aromaticity of multi-nuclear metal complexes; (iv) investigation of the kinetics and thermodynamics of copper-mediated nitrene insertion into C-H and H-H bond; and (v) accurate computations of dissociation energies of hydrogen-bonded DNA duplex moieties utilizing the resolution of identity correlation consistent composite approach (RI-ccCA).
Date: August 2011
Creator: Tekarli, Sammer M.
System: The UNT Digital Library
Accuracy and Efficiency in Computational Chemistry: The Correlation Consistent Composite Approach (open access)

Accuracy and Efficiency in Computational Chemistry: The Correlation Consistent Composite Approach

One of the central concerns of computational chemistry is that of efficiency (i.e. the development of methodologies which will yield increased accuracy of prediction without requiring additional computational resources – RAM, disk space, computing time). Though the equations of quantum mechanics are known, the solutions to these equations often require a great deal of computing power. This dissertation primarily concerns the theme of improved computational efficiency (i.e. the achievement of greater accuracy with reduced computational cost). Improvements in the efficiency of computational chemistry are explored first in terms of the correlation consistent composite approach (ccCA). The ccCA methodology was modified and this enhanced ccCA methodology was tested against the diverse G3/05 set of 454 energetic properties. As computational efficiency improves, molecules of increasing size may be studied and this dissertation explored the issues (differential correlation and size extensivity effects) associated with obtaining chemically accurate (within 1 kcal mol-1) enthalpies of formation for hydrocarbon molecules of escalating size. Two applied projects are also described; these projects concerned the theoretical prediction of a novel rare gas compound, FKrOH, and the mechanism of human glutathione synthetase’s (hGS) negative cooperativity. The final work examined the prospect for the parameterization of the modified embedded atom …
Date: August 2011
Creator: Wilson, Brent R.
System: The UNT Digital Library
Boron Nitride by Atomic Layer Deposition: A Template for Graphene Growth (open access)

Boron Nitride by Atomic Layer Deposition: A Template for Graphene Growth

The growth of single and multilayer BN films on several substrates was investigated. A typical atomic layer deposition (ALD) process was demonstrated on Si(111) substrate with a growth rate of 1.1 Å/cycle which showed good agreement with the literature value and a near stoichiometric B/N ratio. Boron nitride films were also deposited by ALD on Cu poly crystal and Cu(111) single crystal substrates for the first time, and a growth rate of ~1ML/ALD cycle was obtained with a B/N ratio of ~2. The realization of a h-BN/Cu heterojunction was the first step towards a graphene/h-BN/Cu structure which has potential application in gateable interconnects.
Date: August 2011
Creator: Zhou, Mi
System: The UNT Digital Library
Interfacial Electrochemistry of Copper and Spectro-Electrochemical Characterization of Oxygen Reduction Reaction (open access)

Interfacial Electrochemistry of Copper and Spectro-Electrochemical Characterization of Oxygen Reduction Reaction

The first part of this dissertation highlights the contents of the electrochemical characterization of Cu and its electroplating on Ru-based substrates. The growth of Ru native oxide does diminish the efficiency of Cu plating on Ru surface. However, the electrochemical formed irreversible Ru hydrate dioxide (RuOxHy) shows better coverage of Cu UPD. The conductive Ru oxides are directly plateable liner materials as potential diffusion barriers for the IC fabrication. The part II of this dissertation demonstrates the development of a new rapid corrosion screening methodology for effective characterization Cu bimetallic corrosion in CMP and post-CMP environments. The corrosion inhibitors and antioxidants were studied in this dissertation. In part III, a new SEC methodology was developed to study the ORR catalysts. This novel SEC cell can offer cheap, rapid optical screening results, which helps the efficient development of a better ORR catalyst. Also, the SEC method is capable for identifying the poisoning of electrocatalysts. Our data show that the RuOxHy processes several outstanding properties of ORR such as high tolerance of sulfation, high kinetic current limitation and low percentage of hydrogen peroxide.
Date: August 2011
Creator: Yu, Kyle Kai-Hung
System: The UNT Digital Library
Molecular Structure Analyses of Asymmetric Hydrocarbon Liquid Compounds in the Gas Phase Using Chirped-pulse Fourier Transform Microwave Spectroscopy: Acyl Chlorides and Perfluorinated Acyl Chlorides (open access)

Molecular Structure Analyses of Asymmetric Hydrocarbon Liquid Compounds in the Gas Phase Using Chirped-pulse Fourier Transform Microwave Spectroscopy: Acyl Chlorides and Perfluorinated Acyl Chlorides

Examinations of the effects of (a.) alkyl carbon chain length and (b.) perfluorination of acyl chlorides; propionyl chloride, butyryl chloride, valeroyl chloride, and perfluorinated acyl chlorides; perfluoropropionyl chloride and perfluorobutyryl chloride, are reported and compared using CP-FTMW spectroscopy. All of these molecules are already published in various journals except for valeroyl chloride. The chapters are organized by molecule alkyl chain length and include some background theory. Conformational stability, internal rotation, helicity, and ionic character of the C-Cl bond via the nuclear electric quadrupole coupling constant (χzz) are analyzed. Results show syn, syn-anti/syn-gauche, and syn-anti-anti/syn-gauche-anti stable conformations. Internal rotation was only seen in propionyl chloride. Helicity was not observed. (χzz) was observed to be inert to alkyl chain length, ~ 60 MHz and ~ 65 MHz for the nonfluorinated and fluorinated acyl chlorides. Partial fluorination and varying functional groups are recommended.
Date: August 2011
Creator: Powoski, Robert A.
System: The UNT Digital Library