Soil and Forest Variation by Topography and Succession Stages in the Greenbelt Corridor, Floodplain of the Elm Fork of the Trinity River, North Texas. (open access)

Soil and Forest Variation by Topography and Succession Stages in the Greenbelt Corridor, Floodplain of the Elm Fork of the Trinity River, North Texas.

The Greenbelt Corridor (GBC), located in a floodplain of the Elm Fork of the Trinity River, contains patches of bottomland forest and serves as part of Lake Lewisville’s flood control backwaters. This study examines forest structure and composition in relation to topographic position and forest stage in the GBC. Thirty two plots were surveyed within various stage classes, topographic positions, and USDA soil types. Trees were identified and measured for height and DBH. Density, basal area, and importance value for each of species was calculated. Soil and vegetation were analyzed using ANOVA, Principal Component Analysis, Canonical Correlation, Canonical Correspondence Analysis and Cluster Analysis. Tests confirmed that calcium carbonate and pH show significant differences with topographic positions but not with forest stage. Potassium shows no significant difference with soil texture class. Sand shows a strong negative correlation with moisture, organic matter, organic carbon and negative correlation with calcium carbonate and potassium. Silt shows positive correlation with moisture, organic matter, organic carbon, and calcium carbonate. Clay shows strong positive correlation with moisture, organic matter and organic carbon but negative correlations with pH. Swamp privet is dominant tree types in wetland forest. Sugarberry cedar elm, green ash and American elm are widely distributed …
Date: August 2011
Creator: Rijal, Rajan
System: The UNT Digital Library
Effects of CFT Legumine™ Rotenone on Macroinvertebrates in Four Drainages of Montana and New Mexico (open access)

Effects of CFT Legumine™ Rotenone on Macroinvertebrates in Four Drainages of Montana and New Mexico

Rotenone is considered essential in the restoration of native fish populations; however, the technique is contentious and criticized, specifically concerning impacts to invertebrates. Knowledge of effects to non-target organisms is important for the management and conservation of fish populations. This thesis has two general objectives: (1) demonstrate the influence CFT Legumine™ rotenone has on benthic macroinvertebrates for restoration projects in Montana and New Mexico and (2) evaluate the immediate response by means of invertebrate drift. Chapters 2 and 4 incorporate results from four different restoration projects that examine benthic macroinvertebrate response. Results indicate treatment effects are minimal for Specimen and Cherry Creek projects in Montana. New Mexico projects, Comanche and Costilla Creek suggest a greater influence. Potassium permanganate used to neutralize rotenone, influenced communities in three of the four projects. Regardless, invertebrates in all four projects recovered one-year after treatment. Chapter 3 examines macroinvertebrate drift during rotenone treatment. Results suggest a delayed response compared to previous literature. Rotenone appears to have the greatest immediate influence on the early life stages of Ephemeroptera and Plecoptera. To reduce impacts of rotenone to invertebrates, managers should apply CFT Legumine and use the minimal dosage and duration to complete the projects goal of removing …
Date: August 2011
Creator: Skorupski, Joseph A., Jr.
System: The UNT Digital Library
Tests of a New Model of Paclitaxel-Induced Neuropathy and the Effects of Paclitaxel on the Dorsal Root Ganglia (open access)

Tests of a New Model of Paclitaxel-Induced Neuropathy and the Effects of Paclitaxel on the Dorsal Root Ganglia

This study examined a new model of paclitaxel-induced neuropathic pain and the effects of systemic paclitaxel on the gap junction protein subunit Cx43 and potassium inwardly-rectifying channel Kir4.1 within the dorsal root ganglia. In the new neuropathic pain model, subplantar injections of paclitaxel resulted in decreased conduction velocities of A-beta fiber compound action potentials in the sciatic (5.9%) and tibial nerves (6.8%) as well as in M (10.6%) and H (10.2%) waves. By using repeated recordings it was found that following paclitaxel injection, conduction velocities in the contralateral plantar nerve increased (9.2%). Systemic injections of paclitaxel resulted in reduced Kir4.1 immunolabeling in the dorsal root ganglia compared to vehicle injections. This reduction was observed in total labeling (32.4%) as well as in areas of intense labeling (28.7%). Reductions in overall Cx43 immunolabeling (25%) and area (25%) following systemic paclitaxel injections were not statistically significant. The results of these studies suggest that subplantar injections of paclitaxel can result in reduced peripheral nerve conduction velocities. The results also show that a unilateral neuropathy can result in contralateral changes in conduction velocities. The effects of paclitaxel on reducing Kir4.1 levels suggest that neuropathic pain caused by paclitaxel may share mechanisms in common with …
Date: August 2011
Creator: McWilliams, Steven P.
System: The UNT Digital Library
Genetic Analysis of Development and Behavior in Hypoxia and Cellular Characterization of Anoxia Induced Meiotic Prophase Arrest in Caenorhabditis Elegans (open access)

Genetic Analysis of Development and Behavior in Hypoxia and Cellular Characterization of Anoxia Induced Meiotic Prophase Arrest in Caenorhabditis Elegans

It was hypothesized that chronic hypoxia will affect various biological processes including developmental trajectory and behavior. To test this hypothesis, embryos were raised to adulthood in severe hypoxic environments (0.5% O2 or 1% O2, 22°C) and analyzed for survival rate, developmental progression, and altered behaviors. Wildtype hermaphrodites survive chronic hypoxia yet developmental trajectory is slowed. The hermaphrodites raised in chronic hypoxia had different phenotypes in comparison to the normoxic controls. First, hermaphrodites exposed to chronic hypoxia produced a significantly lower number of embryos and had a slight increase in male progeny. This suggests that chronic hypoxia exposure during development affects the germline. Second, animals raised in chronic hypoxia from embryos to young adults have a slight increase in lifespan when re-exposed to a normoxic environment, indicating that chronic hypoxia does not negatively decrease lifespan. Finally, hermaphrodites that were raised in hypoxia will lay the majority of their eggs on the area of the agar plate where the bacterial lawn is not present. This is in contrast to animals in normoxia, which lay the majority of their eggs on the bacterial lawn. One hypothesis for this hypoxia-induced egg-laying behavior is that the animal can sense microenvironments in hypoxia. To examine if …
Date: August 2011
Creator: Little, Brent Ashley
System: The UNT Digital Library
Molecular Basis of Plant Defense Against Aphids: Role of the Arabidopsis Thaliana PAD4 and MPL1 Genes (open access)

Molecular Basis of Plant Defense Against Aphids: Role of the Arabidopsis Thaliana PAD4 and MPL1 Genes

Myzus persicae (Sülzer), commonly known as green peach aphid (GPA), utilizes its slender stylet to penetrate the plant tissues intercellularly and consume copious amounts of photoassimilates present in the phloem sap causing extensive damage to host plants. The compatible interaction between GPA and Arabidopsis thaliana enabled us to characterize plant response to aphid infestation. Upon GPA infestation, Arabidopsis PAD4 (PHYTOALEXIN DEFICIENT4) gene modulates premature leaf senescence, which is involved in the programmed degradation of cellular components and the export of nutrients out of the senescing leaf. Senescence mechanism is utilized by plants to limit aphid growth. In addition, PAD4 provides antixenosis (deters insect settling and feeding) and antibiosis (impair aphid fecundity) against GPA and adversely impact sieve element availability to GPA. Basal expression of PAD4 contributes to antibiosis, and the GPA-induced expression of PAD4 contributes to antixenosis. Mutation in the Arabidopsis stearoyl-ACP desaturase encoding SSI2 (suppressor of SALICYLIC ACID [SA] insensitivity2) gene that results in an accelerated cell death phenotype and dwarfing, also conferred heightened antibiosis to GPA. Results of this study indicate that PAD4 is required for the ssi2-mediated enhanced antibiosis to GPA. The PAD4 protein contains conserved Ser, Asp and His residues that form the catalytic triad of …
Date: August 2011
Creator: Louis, Joe
System: The UNT Digital Library
Bioconcentration of Triclosan, Methyl-Triclosan, and Triclocarban in the Plants and Sediments of a Constructed Wetland (open access)

Bioconcentration of Triclosan, Methyl-Triclosan, and Triclocarban in the Plants and Sediments of a Constructed Wetland

Triclosan and triclocarban are antimicrobial compounds added to a variety of consumer products that are commonly detected in waste water effluent. The focus of this study was to determine whether the bioconcentration of these compounds in wetland plants and sediments exhibited species specific and site specific differences by collecting field samples from a constructed wetland in Denton, Texas. The study showed that species-specific differences in bioconcentration exist for triclosan and triclocarban. Site-specific differences in bioconcentration were observed for triclosan and triclocarban in roots tissues and sediments. These results suggest that species selection is important for optimizing the removal of triclosan and triclocarban in constructed wetlands and raises concerns about the long term exposure of wetland ecosystems to these compounds.
Date: August 2011
Creator: Zarate, Frederick M., Jr.
System: The UNT Digital Library