Wavelength-specific reflections: A decade of EUV actinic mask inspection research (open access)

Wavelength-specific reflections: A decade of EUV actinic mask inspection research

Mask inspection is essential for the success of any pattern-transfer lithography technology, and EUV Lithography in particular faces unique challenges. EUV masks resonant-reflective multilayer coatings have a narrow, wavelength-specific response that dramatically affects the way that defects appear, or disappear, at various illuminating wavelengths. Furthermore, the ever-shrinking size of 'critical' defects limits the potential effectiveness of DUV inspection techniques over time. Researchers pursuing numerous ways of finding and characterizing defects on EUV masks and have met with varying degrees of success. Their lessons inform the current, urgent exploration to select the most effective techniques for high-volume manufacturing. Ranging from basic research and demonstration experiments to commercial inspection tool prototypes, we survey the recent history of work in this area, including sixteen projects in Europe, Asia, and America. Solutions range from scanning beams to microscopy, dark field imaging to pattern transfer.
Date: December 31, 2010
Creator: Goldberg, Kenneth & Mochi, Iacopo
System: The UNT Digital Library
CHARM 2010: Experiment summary and future charm facilities (open access)

CHARM 2010: Experiment summary and future charm facilities

The CHARM 2010 meeting had over 30 presentations of experimental results, plus additional future facilities talks just before this summary talk. Since there is not enough time to even summarize all that has been shown from experiments and to recognize all the memorable plots and results - tempting as it is to reproduce the many clean signals and data vs theory figures, the quantum correlations plots, and the D-mixing plots before and after the latest CLEO-c data is added. So, this review will give only my personal observations, exposing my prejudices and my areas of ignorance, no doubt. This overview will be at a fairly high level of abstraction - no re-showing individual plots or results. I ask the forgiveness of those who will have been slighted in this way - meaning all the presents.
Date: December 1, 2010
Creator: Appel, Jeffrey A.
System: The UNT Digital Library
SINGLE-MODE FIBER, VELOCITY INTERFEROMETRY (open access)

SINGLE-MODE FIBER, VELOCITY INTERFEROMETRY

None
Date: December 12, 2010
Creator: Krauter, K. G.; Jacobson, G. F.; Patterson, J. R.; Nguyen, J. H. & Ambrose, W. P.
System: The UNT Digital Library
A Case for the Use of 3-D Attenuation Models in Ground Motion and Seismic Hazard Assessment (open access)

A Case for the Use of 3-D Attenuation Models in Ground Motion and Seismic Hazard Assessment

None
Date: December 6, 2010
Creator: Pasyanos, M E
System: The UNT Digital Library
Radiation multigroup diffusion for refractive, lossy media in ALE3D (U) (open access)

Radiation multigroup diffusion for refractive, lossy media in ALE3D (U)

None
Date: December 16, 2010
Creator: Shestakov, A I
System: The UNT Digital Library
Symmetry-breaking dynamical pattern and localization observed in the high-temperature vibrational spectrum of NaI (open access)

Symmetry-breaking dynamical pattern and localization observed in the high-temperature vibrational spectrum of NaI

None
Date: December 14, 2010
Creator: Manley, M E; Abernathy, D L; Agladze, N I & Sievers, A J
System: The UNT Digital Library
Deciphering the Electron Transport Pathway for Graphene Oxide Reduction by Shewanella oneidensis MR-1 (open access)

Deciphering the Electron Transport Pathway for Graphene Oxide Reduction by Shewanella oneidensis MR-1

None
Date: December 9, 2010
Creator: Jiao, Y.; Qian, F.; Li, Y.; Wang, G. M.; Saltikov, C. & Granick, J.
System: The UNT Digital Library
Diesel Engine Dynamometer Testing of Impedancemetric NOx Sensors (open access)

Diesel Engine Dynamometer Testing of Impedancemetric NOx Sensors

None
Date: December 15, 2010
Creator: Woo, L. Y.; Glass, R. S.; Novak, R. F. & Visser, J. H.
System: The UNT Digital Library
Size-dependent Si Nanowire Mechanics are Invariant to Changes in the Surface State (open access)

Size-dependent Si Nanowire Mechanics are Invariant to Changes in the Surface State

None
Date: December 29, 2010
Creator: Lee, B & Rudd, R E
System: The UNT Digital Library
Charmed Hadron Physics at BABAR (open access)

Charmed Hadron Physics at BABAR

We present a study of the D{sup +}{pi}{sup -}, D{sup 0}{pi}{sup +}, and D*{sup +}{pi}{sup -} systems in inclusive e{sup +}e{sup -} {yields} c{bar c} interactions in a search for new excited D meson states. We use a dataset, consisting of {approx}454 fb{sup -1}, collected at center-of-mass energies near 10.58 GeV by the BABAR detector at the SLAC PEP-II asymmetric-energy collider. We observe, for the first time, candidates for the radial excitations of the D{sup 0}, D*{sup 0}, and D*{sup +}, as well as the L = 2 excited states of the D{sup 0} and D{sup +}, where L is the orbital angular momentum of the quarks.
Date: December 16, 2010
Creator: Benitez, Jose
System: The UNT Digital Library
Using a two-step matrix solution to reduce the run time in KULL's magnetic diffusion package (open access)

Using a two-step matrix solution to reduce the run time in KULL's magnetic diffusion package

Recently a Resistive Magnetohydrodynamics (MHD) package has been added to the KULL code. In order to be compatible with the underlying hydrodynamics algorithm, a new sub-zonal magnetics discretization was developed that supports arbitrary polygonal and polyhedral zones. This flexibility comes at the cost of many more unknowns per zone - approximately ten times more for a hexahedral mesh. We can eliminate some (or all, depending on the dimensionality) of the extra unknowns from the global matrix during assembly by using a Schur complement approach. This trades expensive global work for cache-friendly local work, while still allowing solution for the full system. Significant improvements in the solution time are observed for several test problems.
Date: December 17, 2010
Creator: Brunner, T A & Kolev, T V
System: The UNT Digital Library
The use of a high-order MEMS deformable mirror in the Gemini Planet Imager (open access)

The use of a high-order MEMS deformable mirror in the Gemini Planet Imager

We briefly review the development history of the Gemini Planet Imager's 4K Boston Micromachines MEMS deformable mirror. We discuss essential calibration steps and algorithms to control the MEMS with nanometer precision, including voltage-phase calibration and influence function characterization. We discuss the integration of the MEMS into GPI's Adaptive Optics system at Lawrence Livermore and present experimental results of 1.5 kHz closed-loop control. We detail mitigation strategies in the coronagraph to reduce the impact of abnormal actuators on final image contrast.
Date: December 17, 2010
Creator: Poyneer, L. A.; Bauman, B.; Cornelissen, S.; Jones, S.; Macintosh, B.; Palmer, D. et al.
System: The UNT Digital Library
The National Ignition Facility and the Promise of Inertial Fusion Energy (open access)

The National Ignition Facility and the Promise of Inertial Fusion Energy

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. …
Date: December 13, 2010
Creator: Moses, E I
System: The UNT Digital Library
INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER (open access)

INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER

Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.
Date: December 8, 2010
Creator: Smith, M. & Iverson, D.
System: The UNT Digital Library
Summary of session 3 on synchrotron radiation and beam dynamics (open access)

Summary of session 3 on synchrotron radiation and beam dynamics

We summarize presentations, discussions and general conclusions of the Workshop session on 'Beam Dynamics Issues'. Major subjects include effects due to synchrotron radiation (SR), cryogenic loads, electron cloud, impedances, intra-beam scattering (IBS) and beam-beam interactions.
Date: December 1, 2010
Creator: Shiltsev, V. & Metral, E.
System: The UNT Digital Library
Adjoint-Based Implicit Uncertainty Analysis for Figures of Merit in a Laser Inertial Fusion Engine (open access)

Adjoint-Based Implicit Uncertainty Analysis for Figures of Merit in a Laser Inertial Fusion Engine

A primary purpose of computational models is to inform design decisions and, in order to make those decisions reliably, the confidence in the results of such models must be estimated. Monte Carlo neutron transport models are common tools for reactor designers. These types of models contain several sources of uncertainty that propagate onto the model predictions. Two uncertainties worthy of note are (1) experimental and evaluation uncertainties of nuclear data that inform all neutron transport models and (2) statistical counting precision, which all results of a Monte Carlo codes contain. Adjoint-based implicit uncertainty analyses allow for the consideration of any number of uncertain input quantities and their effects upon the confidence of figures of merit with only a handful of forward and adjoint transport calculations. When considering a rich set of uncertain inputs, adjoint-based methods remain hundreds of times more computationally efficient than Direct Monte-Carlo methods. The LIFE (Laser Inertial Fusion Energy) engine is a concept being developed at Lawrence Livermore National Laboratory. Various options exist for the LIFE blanket, depending on the mission of the design. The depleted uranium hybrid LIFE blanket design strives to close the fission fuel cycle without enrichment or reprocessing, while simultaneously achieving high discharge …
Date: December 3, 2010
Creator: Seifried, J. E.; Fratoni, M.; Kramer, K. J.; Latkowski, J. F.; Peterson, P. F.; Powers, J. J. et al.
System: The UNT Digital Library
Solid State NMR Investigations of Chain Dynamics and Network Order in Model Poly(dimethylsiloxane) Elastomers (open access)

Solid State NMR Investigations of Chain Dynamics and Network Order in Model Poly(dimethylsiloxane) Elastomers

This work is at a relatively early stage, however it has been demonstrated that we can reliably probe basic network architectures using the MQ-NMR technique. The initial results are in good agreement with what is known from standard network theory and will serve as a basis for the study of progressively increasing structural complexity in Siloxane network systems.
Date: December 9, 2010
Creator: Lewicki, J P; Mayer, B P; Wilson, T S; Chinn, S C & Maxwell, R S
System: The UNT Digital Library
Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines (open access)

Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines

ICF power plants, such as the LIFE scheme at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. To reduce the uncertainties of cooling and beam/target propagation through such gas-filled chambers, we present a pulsed plasma source producing 2-5 eV plasma comprised of high-Z gases. We use a 5-kJ, 100-ns theta discharge for high peak plasma-heating-power, an electrode-less discharge for minimizing impurities, and unobstructed axial access for diagnostics and beam (and/or target) propagation studies. We will report on the plasma source requirements, design process, and the system design.
Date: December 3, 2010
Creator: Rhodes, M A; Kane, J; Loosmore, G; DeMuth, J & Latkowski, J
System: The UNT Digital Library
Modeling of fate and transport of co-injection of H2S with CO2 in deep saline formations (open access)

Modeling of fate and transport of co-injection of H2S with CO2 in deep saline formations

The geological storage of CO{sub 2} in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases into the atmosphere. However, costs of capture and compression of CO{sub 2} from industrial waste streams containing small quantities of sulfur and nitrogen compounds such as SO{sub 2}, H{sub 2}S and N{sub 2} are very expensive. Therefore, studies on the co-injection of CO{sub 2} containing other acid gases from industrial emissions are very important. In this paper, numerical simulations were performed to study the co-injection of H{sub 2}S with CO{sub 2} in sandstone and carbonate formations. Results indicate that the preferential dissolution of H{sub 2}S gas (compared with CO{sub 2} gas) into formation water results in the delayed breakthrough of H{sub 2}S gas. Co-injection of H{sub 2}S results in the precipitation of pyrite through interactions between the dissolved H{sub 2}S and Fe{sup 2+} from the dissolution of Fe-bearing minerals. Additional injection of H{sub 2}S reduces the capabilities for solubility and mineral trappings of CO{sub 2} compared to the CO{sub 2} only case. In comparison to the sandstone (siliciclastic) formation, the carbonate formation is less favorable to the mineral sequestration of CO{sub 2}. Different from CO{sub 2} …
Date: December 15, 2010
Creator: Zhang, W.; Xu, T. & Li, Y.
System: The UNT Digital Library
EFFECT OF GLASS-BATCH MAKEUP ON THE MELTING PROCESS (open access)

EFFECT OF GLASS-BATCH MAKEUP ON THE MELTING PROCESS

The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 {micro}m in size, caused extensive foaming because their major portion dissolved at temperatures <800 C, contributing to the formation of viscous glass forming melt that trapped evolving batch gases. Primary foam did not occur in batches with larger quartz grains, {+-}75 {micro}m in size, because their major portion dissolved at temperatures >800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation …
Date: December 7, 2010
Creator: AA, KRUGER & P, HRMA
System: The UNT Digital Library
A three wavelength scheme to optimize hohlraum coupling on the National Ignition Facility (open access)

A three wavelength scheme to optimize hohlraum coupling on the National Ignition Facility

By using three tunable wavelengths on different cones of laser beams on the National Ignition Facility, numerical simulations show that the energy transfer between beams can be tuned to redistribute the energy within the cones of beams most prone to backscatter instabilities. These radiative hydrodynamics and laser-plasma interaction simulations have been tested against large scale hohlraum experiments with two tunable wavelengths, and reproduce the hohlraum energetics and symmetry. Using a third wavelength provides a greater level of control of the laser energy distribution and coupling in the hohlraum, and could significantly reduce stimulated Raman scattering losses and increase the hohlraum radiation drive while maintaining a good implosion symmetry.
Date: December 16, 2010
Creator: Michel, P; Divol, L; Town, R & Rosen, M
System: The UNT Digital Library
Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock (open access)

Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock

We have used the TOUGH2-MP/ECO2N code to perform numerical simulation studies of the long-term behavior of CO{sub 2} stored in an aquifer with a sloping caprock. This problem is of great practical interest, and is very challenging due to the importance of multi-scale processes. We find that the mechanism of plume advance is different from what is seen in a forced immiscible displacement, such as gas injection into a water-saturated medium. Instead of pushing the water forward, the plume advances because the vertical pressure gradients within the plume are smaller than hydrostatic, causing the groundwater column to collapse ahead of the plume tip. Increased resistance to vertical flow of aqueous phase in anisotropic media leads to reduced speed of updip plume advancement. Vertical equilibrium models that ignore effects of vertical flow will overpredict the speed of plume advancement. The CO{sub 2} plume becomes thinner as it advances, yet the speed of advancement remains constant over the entire simulation period of up to 400 years, with migration distances of more than 80 km. Our simulations include dissolution of CO{sub 2} into the aqueous phase and associated density increase, and molecular diffusion. However, no convection develops in the aqueous phase because it …
Date: December 28, 2010
Creator: Pruess, K. & Nordbotten, J.
System: The UNT Digital Library
The status of open heavy flavor production at RHIC (open access)

The status of open heavy flavor production at RHIC

We discuss the calculation of open heavy flavor cross sections at RHIC and describe how the semileptonic decays of charm and bottom quarks can be separated.
Date: December 21, 2010
Creator: Vogt, R
System: The UNT Digital Library
Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine (open access)

Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.
Date: December 7, 2010
Creator: Latkowski, J. F.; Kramer, K. J.; Abbott, R. P.; Morris, K. R.; DeMuth, J.; Divol, L. et al.
System: The UNT Digital Library