Measurements of Core and Compressed Shell Temperature and Density Conditions in Thick-Wall Target Implosions at OMEGA (open access)

Measurements of Core and Compressed Shell Temperature and Density Conditions in Thick-Wall Target Implosions at OMEGA

None
Date: September 15, 2010
Creator: Florido, R.; Mancini, R. C.; Nagayama, T.; Tommasini, R.; Delettrez, J. A.; Regan, S. P. et al.
Object Type: Article
System: The UNT Digital Library
Synthesis and Characterization of Oxide Feedstock Powders for the Fuel Cycle R&D Program (open access)

Synthesis and Characterization of Oxide Feedstock Powders for the Fuel Cycle R&D Program

Nuclear fuel feedstock properties, such as physical, chemical, and isotopic characteristics, have a significant impact on the fuel fabrication process and, by extension, the in-reactor fuel performance. This has been demonstrated through studies with UO{sub 2} spanning greater than 50 years. The Fuel Cycle R&D Program with The Department of Energy Office of Nuclear Energy has initiated an effort to develop a better understanding of the relationships between oxide feedstock, fresh fuel properties, and in-reactor fuel performance for advanced mixed oxide compositions. Powder conditioning studies to enable the use of less than ideal powders for ceramic fuel pellet processing are ongoing at Los Alamos National Laboratory (LANL) and an understanding of methods to increase the green density and homogeneity of pressed pellets has been gained for certain powders. Furthermore, Oak Ridge National Laboratory (ORNL) is developing methods for the co-conversion of mixed oxides along with techniques to analyze the degree of mixing. Experience with the fabrication of fuel pellets using co-synthesized multi-constituent materials is limited. In instances where atomically mixed solid solutions of two or more species are needed, traditional ceramic processing methods have been employed. Solution-based processes may be considered viable synthesis options, including co-precipitation (AUPuC), direct precipitation, direct-conversion …
Date: September 1, 2010
Creator: Voit, Stewart L.; Vedder, Raymond James & Johnson, Jared A.
Object Type: Report
System: The UNT Digital Library
An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity (open access)

An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.
Date: September 23, 2010
Creator: Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra et al.
Object Type: Article
System: The UNT Digital Library
IBS for non-gaussian distributions (open access)

IBS for non-gaussian distributions

In many situations distribution can significantly deviate from Gaussian which requires accurate treatment of IBS. Our original interest in this problem was motivated by the need to have an accurate description of beam evolution due to IBS while distribution is strongly affected by the external electron cooling force. A variety of models with various degrees of approximation were developed and implemented in BETACOOL in the past to address this topic. A more complete treatment based on the friction coefficient and full 3-D diffusion tensor was introduced in BETACOOL at the end of 2007 under the name 'local IBS model'. Such a model allowed us calculation of IBS for an arbitrary beam distribution. The numerical benchmarking of this local IBS algorithm and its comparison with other models was reported before. In this paper, after briefly describing the model and its limitations, they present its comparison with available experimental data.
Date: September 27, 2010
Creator: Fedotov, A.; Sidorin, A.O. & Smirnov, A.V.
Object Type: Article
System: The UNT Digital Library
Titanium-Alloy Power Capacitor: High-Power Titanate Capacitor for Power Electronics (open access)

Titanium-Alloy Power Capacitor: High-Power Titanate Capacitor for Power Electronics

ADEPT Project: There is a constant demand for better performing, more compact, lighter weight, and lower cost electronic devices. Unfortunately, the materials traditionally used to make components for electronic devices have reached their limits. Case Western is developing capacitors made of new materials that could be used to produce the next generation of compact and efficient high-powered consumer electronics and electronic vehicles. A capacitor is an important component of an electronic device. It stores an electric charge and then discharges it into an electrical circuit in the device. Case Western is creating its capacitors from titanium, an abundant material extracted from ore which can be found in the U.S. Case Western's capacitors store electric charges on the surfaces of films, which are grown on a titanium alloy electrode that is formed as a spinal column with attached branches. The new material and spine design make the capacitor smaller and lighter than traditional capacitors, and they enable the component to store 300% more energy than capacitors of the same weight made of tantalum, the current industry standard. Case Western's titanium-alloy capacitors also spontaneously self-repair, which prolongs their life.
Date: September 1, 2010
Creator: unknown
Object Type: Text
System: The UNT Digital Library
Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view. (open access)

Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and …
Date: September 17, 2010
Creator: Elcock, D. (Environmental Science Division)
Object Type: Report
System: The UNT Digital Library
Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856). (open access)

Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.
Date: September 1, 2010
Creator: Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott & Asay, James Russell
Object Type: Report
System: The UNT Digital Library
Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010 (open access)

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or “Core Modeling Update”) Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).
Date: September 1, 2010
Creator: Aryaeinejad, Rahmat; Crawford, Douglas S.; DeHart, Mark D.; Griffith, George W.; Lucas, D. Scott; Nielsen, Joseph W. et al.
Object Type: Report
System: The UNT Digital Library
Biospecimen Reporting for Improved Study Quality (BRISQ) (open access)

Biospecimen Reporting for Improved Study Quality (BRISQ)

Human biospecimens are subjected to collection, processing, and storage that can significantly alter their molecular composition and consistency. These biospecimen preanalytical factors, in turn, influence experimental outcomes and the ability to reproduce scientific results. Currently, the extent and type of information specific to the biospecimen preanalytical conditions reported in scientific publications and regulatory submissions varies widely. To improve the quality of research that uses human tissues, it is crucial that information on the handling of biospecimens be reported in a thorough, accurate, and standardized manner. The Biospecimen Reporting for Improved Study Quality (BRISQ) recommendations outlined herein are intended to apply to any study in which human biospecimens are used. The purpose of reporting these details is to supply others, from researchers to regulators, with more consistent and standardized information to better evaluate, interpret, compare, and reproduce the experimental results. The BRISQ guidelines are proposed as an important and timely resource tool to strengthen communication and publications on biospecimen-related research and to help reassure patient contributors and the advocacy community that their contributions are valued and respected.
Date: September 2, 2010
Creator: Institute, National Cancer; Jewell, Ph.D., Scott D.; Seijo, M.S., Edward; Kelly, Ph.D., Andrea; Somiari, Ph.D., Stella; B.Chir., M.B. et al.
Object Type: Article
System: The UNT Digital Library
Solid oxide electrochemical reactor science. (open access)

Solid oxide electrochemical reactor science.

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.
Date: September 1, 2010
Creator: Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea & Key, Robert J. (Colorado School of Mines, Golden, CO)
Object Type: Report
System: The UNT Digital Library
Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy (open access)

Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy

For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale was determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point …
Date: September 30, 2010
Creator: UOP LLC
Object Type: Report
System: The UNT Digital Library
Performance Metrics for Commercial Buildings (open access)

Performance Metrics for Commercial Buildings

Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.
Date: September 30, 2010
Creator: Fowler, Kimberly M.; Wang, Na; Romero, Rachel L. & Deru, Michael P.
Object Type: Report
System: The UNT Digital Library
Power Plant Replacement Study (open access)

Power Plant Replacement Study

None
Date: September 30, 2010
Creator: Reed, Gary
Object Type: Report
System: The UNT Digital Library
Power Plant Replacement Study (open access)

Power Plant Replacement Study

None
Date: September 30, 2010
Creator: Reed, Gary
Object Type: Report
System: The UNT Digital Library
Studies and proposed changes to the RHIC p-Carbon polarimeters for the upcoming RUN-11 (open access)

Studies and proposed changes to the RHIC p-Carbon polarimeters for the upcoming RUN-11

The RHIC polarized proton complex utilizes polarimeters in each of the Blue and Yellow beams that measure the beam polarization through the p-Carbon elastic scattering process in the Coulomb Nuclear Interference kinematic region. This along with a Polarized Hydrogen Jet Target that utilizes the proton-proton elastic scattering process to first measure the analyzing power of the reaction and using the reverse process to measure the beam polarization. The latter is used to calibrate the p-Carbon polarimeters at the desired beam energy. In Run 9 RHIC ran with beams at center-of-mass energies of 200 and 500 GeV respectively. The higher beam intensities as well as the fact that the 250 GeV beam size is much smaller than that at 100 GeV resulted in significantly higher rates seen by the polarimeters and led to observed instability. In this paper, we will discuss the problems encountered and the tests that were carried out using the AGS as a proxy in an attempt to solve the problems and the path forward we took towards the upcoming polarized proton Run11.
Date: September 27, 2010
Creator: Makdisi, Y.; Alekseev, I.; Aschenauer, E.; Atoian, G.; Bazilevsky, A.; Gill, R. et al.
Object Type: Article
System: The UNT Digital Library
Building America Best Practices Series Volume 11. Builders Challenge Guide to 40% Whole-House Energy Savings in the Marine Climate (open access)

Building America Best Practices Series Volume 11. Builders Challenge Guide to 40% Whole-House Energy Savings in the Marine Climate

This best practices guide is the eleventh in a series of guides for builders produced by the U.S. Department of Energy’s Building America Program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the marine climate (portions of Washington, Oregon, and California) can achieve homes that have whole house energy savings of 40% over the Building America benchmark (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code) with no added overall costs for consumers. These best practices are based on the results of research and demonstration projects conducted by Building America’s research teams. The guide includes information for managers, designers, marketers, site supervisors, and subcontractors, as well as case studies of builders who are successfully building homes that cut energy use by 40% in the marine climate. This document is available on the web at www.buildingamerica.gov. This report was originally cleared 06-29-2010. This version is Rev 1 cleared in Nov 2010. The only change is the reference to …
Date: September 1, 2010
Creator: Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Williamson, Jennifer L. & Love, Pat M.
Object Type: Report
System: The UNT Digital Library
Integrated Advanced Energy Systems Research at IIT (open access)

Integrated Advanced Energy Systems Research at IIT

This report consists of Two research projects; Sustainable Buildings and Hydrogen Storage. Sustainable Building Part includes: Wind and the self powered built environment by professor P. Land and his research group and experimental and computational works by professor D. Rempfer and his research group. Hydrogen Storage part includes: Hydrogen Storage Using Mg-Mixed Metal Hydrides by professor H. Arastoopour and his research team and Carbon Nanostructure as Hydrogen Storage Material by professor J. Prakash and his research team.
Date: September 30, 2010
Creator: Arastoopour, Hamid
Object Type: Report
System: The UNT Digital Library
DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR (open access)

DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics …
Date: September 1, 2010
Creator: Guillen, Donna Post; Grimmett, Tami; Gribik, Anastasia M. & Antal, Steven P.
Object Type: Article
System: The UNT Digital Library
Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion (open access)

Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion

ADEPT Project: GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and electronic devices it's used in.GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.
Date: September 1, 2010
Creator: unknown
Object Type: Text
System: The UNT Digital Library
Personal Dose Equivalent Conversion Coefficients For Photons To 1 GEV (open access)

Personal Dose Equivalent Conversion Coefficients For Photons To 1 GEV

The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 …
Date: September 27, 2010
Creator: Veinot, K. G. & Hertel, N. E.
Object Type: Article
System: The UNT Digital Library
Oxygen-Fired CO{sub 2} Recycle for Application to Direct CO{sub 2} Capture form Coal-Fired Power Plants (open access)

Oxygen-Fired CO{sub 2} Recycle for Application to Direct CO{sub 2} Capture form Coal-Fired Power Plants

The Southern Research/Southern Company 1 MWth Pilot-Scale Coal-Fired Test Facility was successfully retrofit to fire in either the traditional air-fired mode or with 100% oxygen and recycled flue gas, with a fully integrated feedback and control system, including oxygen and recycled flue gas modulation during startup, transfer, and shutdown, safety and operational interlocks, and data acquisition. A MAXON Staged Oxygen Burner for Oxy-Coal Applications produced a stable flame over a significant range of firing turn-down, staging, and while firing five different U.S. coal types. The MAXON burner design produces lower flame temperatures than for air firing, which will enable (A) Safe operation, (B) Reduction of recycle flow without concern about furnace flame temperatures, and (C) May likely be affective at reducing slagging and fouling in the boiler and super heater at full-scale Power Plants. A CFD model of the Oxy-fired Combustion Research Facility (OCRF) was used to predict the flame geometry and temperatures in the OCRF and make a comparison with the air-fired case. The model predictions were consistent with the experimental data in showing that the MAXON burner fired with oxygen produced lower flame temperatures than the air-fired burner while firing with air.
Date: September 26, 2010
Creator: Gale, Thomas
Object Type: Report
System: The UNT Digital Library
Polyethylene-Reflected Arrays of HEU(93.2) Metal Units Separated by Vermiculite (open access)

Polyethylene-Reflected Arrays of HEU(93.2) Metal Units Separated by Vermiculite

This benchmark details the results of an experiment performed in the early 1970s as part of a series testing critical configurations in three dimensional arrays. For this experiment, cylinders of 93.2% enriched uranium metal were arranged in a 2x2x2 array inside of a polyethylene reflector. Layers of vermiculite of varying heights were surrounding each cylinder to achieve criticality variations. A total of four experimental configurations were tested by D.W. Magnuson, and detailed in his experimental report “Critical Three-Dimensional Arrays of Neutron Interacting Units: Part IV. Arrays of U(93.2) Metal Reflected by Concrete and Arrays Separated by Vermiculite and Reflected by Polyethylene.” The benchmark HEU-MET-FAST054 is closely related; the results of both experiments are discussed in the same report (Ref. 1) Closely related work has been recorded in HEU-MET-FAST-053, which is a benchmark evaluation of a different series of three dimensional array experiments with four different moderator materials. HEU-MET-FAST-023 and HEU-MET-FAST-026 are also related because they utilize the same metal cylinders as these experiments.
Date: September 1, 2010
Creator: Gorham, Mackenzie; Briggs, J. Blair; Bess, John D.; Dean, Virginia & Reed, Davis
Object Type: Report
System: The UNT Digital Library
Low-frequency fluid waves in fractures and pipes (open access)

Low-frequency fluid waves in fractures and pipes

Low-frequency analytical solutions have been obtained for phase velocities of symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. Three different fluid wave regimes can exist in such objects, depending on the various combinations of parameters, such as fluid density, fluid viscosity, walls shear modulus, channel thickness, and frequency. Equations for velocities of all these regimes have explicit forms and are verified by comparisons with the exact solutions. The dominant role of fractures in rock permeability at field scales and the strong amplitude and frequency effects of Stoneley guided waves suggest the importance of including these wave effects into poroelastic theories.
Date: September 1, 2010
Creator: Korneev, Valeri
Object Type: Article
System: The UNT Digital Library
Advanced Sodium Fast Reactor Accident Source Terms : Research Needs (open access)

Advanced Sodium Fast Reactor Accident Source Terms : Research Needs

An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic event<U+F0B7>Energetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolant<U+F0B7>Entrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached cladding<U+F0B7>Rates of radionuclide leaching from fuel by liquid sodium<U+F0B7>Surface enrichment of sodium pools by dissolved and suspended radionuclides<U+F0B7>Thermal decomposition of sodium iodide in the containment atmosphere<U+F0B7>Reactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model …
Date: September 1, 2010
Creator: Powers, Dana Auburn; Clement, Bernard; Denning, Richard; Ohno, Shuji & Zeyen, Roland
Object Type: Report
System: The UNT Digital Library