AVNG as a Test Case for Cooperative Design (open access)

AVNG as a Test Case for Cooperative Design

Designing a measurement system that might be used in a nuclear facility is a challenging, if not daunting, proposition. The situation is made more complicated when the system needs to be designed to satisfy the disparate requirements of a monitoring and a host party - a relationship that could prove to be adversarial. The cooperative design of the elements of the AVNG (Attribute Verification with Neutrons and Gamma Rays) system served as a crucible that exercised the possible pitfalls in the design and implementation of a measurement system that could be used in a host party nuclear facility that satisfied the constraints of operation for both the host and monitoring parties. Some of the issues that needed to be addressed in the joint design were certification requirements of the host party and the authentication requirements of the monitoring party. In this paper the nature of the problem of cooperative design will be introduced. The details of cooperative design revolve around the idiosyncratic nature of the adversarial relationship between the parties involved in a possible measurement regime, particularly if measurements on items that may contain sensitive information are being pursued. The possibility of an adversarial interaction is more likely if an …
Date: May 21, 2010
Creator: Luke, S J
Object Type: Article
System: The UNT Digital Library
Axial Anomaly, Dirac Sea, and the Chiral Magnetic Effect (open access)

Axial Anomaly, Dirac Sea, and the Chiral Magnetic Effect

Gribov viewed the axial anomaly as a manifestation of the collective motion of Dirac fermions with arbitrarily high momenta in the vacuum. In the presence of an external magnetic field and a chirality imbalance, this collective motion becomes directly observable in the form of the electric current - this is the chiral magnetic effect (CME). I give an elementary introduction into the physics of CME, and discuss the experimental status and recent developments.
Date: May 26, 2010
Creator: Kharzeev, D.E.
Object Type: Article
System: The UNT Digital Library
B Physics at CDF (open access)

B Physics at CDF

The authors present the latest B physics results from the CDF experiment at the Fermilab Tevatron collider. They focus on a number of analyses, including a measurement of the forward-backward asymmetry of B {yields} K{sup (*)}{mu}{mu} decays, determination of the Cp violating phase sin 2{beta}{sub s} in B{sub s}{sup 0} {yields} J/{psi}{phi} decays, B {yields} J/{psi}X lifetime measurements, observation of resonance structure in {Lambda}{sub b} {yields} {Lambda}{sub c}{pi}{sup -}{pi}{sup +}{pi}{sup -}, and {Upsilon}(1S) polarization.
Date: May 1, 2010
Creator: Pueschel, Elisa
Object Type: Article
System: The UNT Digital Library
Backscatter measurements for NIF ignition targets (open access)

Backscatter measurements for NIF ignition targets

None
Date: May 11, 2010
Creator: Moody, J. D.; Michel, P. A.; Bond, E.; Datte, P.; Krauter, K.; Glenzer, S. H. et al.
Object Type: Article
System: The UNT Digital Library
Beam break-up estimates for the ERL at BNL (open access)

Beam break-up estimates for the ERL at BNL

A prototype Ampere-class superconducting energy recovery linac (ERL) is under advanced construction at BNL. The ERL facility is comprised of a five-cell SC Linac plus a half-cell SC photo-injector RF electron gun, both operating at 703.75 MHz. The facility is designed for either a high-current mode of operation up to 0.5 A at 703.75 MHz or a high-bunch-charge mode of 5 nC at 10 MHz bunch frequency. The R&D facility serves a test bed for an envisioned electron-hadron collider, eRHIC. The high-current, high-charge operating parameters make effective higher-order-mode (HOM) damping mandatory, and requires the determination of HOM tolerances for a cavity upgrade. The niobium cavity has been tested at superconducting temperatures and has provided measured quality factors (Q) for a large number of modes. These numbers were used for the estimate of the beam breakup instability (BBU). The facility will be assembled with a highly flexible lattice covering a vast operational parameter space for verification of the estimates and to serve as a test bed for the concepts directed at future projects.
Date: May 23, 2010
Creator: Ben-Zvi, Ilan; Calaga, R.; Hahn, H.; Hammons, L.; Johnson, E.; Kayran, D. et al.
Object Type: Article
System: The UNT Digital Library
BEAM CONTAINMENT SYSTEM FOR NSLS-II (open access)

BEAM CONTAINMENT SYSTEM FOR NSLS-II

The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of {le} 10% full beam. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause excessive radiation levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (and potentially to measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R&D program will be presented.
Date: May 23, 2010
Creator: Kramer, S. L.; Casey, W. & Job, P. K.
Object Type: Article
System: The UNT Digital Library
Beam Dynamics Studies for the First Muon Linac of the Neutrino Factory (open access)

Beam Dynamics Studies for the First Muon Linac of the Neutrino Factory

Within the Neutrino Factory Project the muon acceleration process involves a complex chain of accelerators including a (single-pass) linac, two recirculating linacs and an FFAG. The linac consists of RF cavities and iron shielded solenoids for transverse focusing and has been previously designed relying on idealized field models. However, to predict accurately the transport and acceleration of a high emittance 30 cm wide beam with 10 % energy spread requires detailed knowledge of fringe field distributions. This article presents results of the front-to-end tracking of the muon beam through numerically simulated realistic field distributions for the shielded solenoids and the RF fields. Real and phase space evolution of the beam has been studied along the linac and the results are presented and discussed.
Date: May 1, 2010
Creator: C. Bontoiu,M. Aslaninejad,J. Pozimski,Alex Bogacz
Object Type: Article
System: The UNT Digital Library
Beam-energy and laser beam-profile monitor at the BNL LINAC (open access)

Beam-energy and laser beam-profile monitor at the BNL LINAC

We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.
Date: May 2, 2010
Creator: Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M. et al.
Object Type: Article
System: The UNT Digital Library
Beam-induced Electron Loading Effects in High Pressure Cavities for a Muon Collider (open access)

Beam-induced Electron Loading Effects in High Pressure Cavities for a Muon Collider

Ionization cooling is a critical building block for the realization of a muon collider. To suppress breakdown in the presence of the external magnetic field, an idea of using an RF cavity filled with high pressure hydrogen gas is being considered for the cooling channel design. One possible problem expected in the high pressure RF cavity is, however, the dissipation of significant RF power through the beam-induced electrons accumulated inside the cavity. To characterize this detrimental loading effect, we develop a simplified model that relates the electron density evolution and the observed pickup voltage signal in the cavity, with consideration of several key molecular processes such as the formation of the polyatomic molecules, recombination and attachment. This model is expected to be compared with the actual beam test of the cavity in the MuCool Test Area (MTA) of Fermilab.
Date: May 1, 2010
Creator: Chung, M.; Tollestrup, A.; Jansson, A.; Yonehara, K.; /Fermilab; Insepov, Z. et al.
Object Type: Article
System: The UNT Digital Library
Beam Test of a High Pressure Cavity for a Muon Collider (open access)

Beam Test of a High Pressure Cavity for a Muon Collider

To demonstrate the feasibility of a high pressure RF cavity for use in the cooling channel of a muon collider, an experimental setup that utilizes 400-MeV Fermilab linac proton beam has been developed. In this paper, we describe the beam diagnostics and the collimator system for the experiment, and report the initial results of the beam commissioning. The transient response of the cavity to the beam is measured by the electric and magnetic pickup probes, and the beam-gas interaction is monitored by the optical diagnostic system composed of a spectrometer and two PMTs.
Date: May 1, 2010
Creator: Chung, M.; Jansson, A.; Moretti, A.; Tollestrup, A.; Yonehara, K.; /Fermilab et al.
Object Type: Article
System: The UNT Digital Library
A Benchmark Comparison of Monte Carlo Particle Transport Algorithms for Binary Stochastic Mixtures (open access)

A Benchmark Comparison of Monte Carlo Particle Transport Algorithms for Binary Stochastic Mixtures

None
Date: May 14, 2010
Creator: Brantley, P
Object Type: Article
System: The UNT Digital Library
BENCHMARK EVALUATION OF THE INITIAL ISOTHERMAL PHYSICS MEASUREMENTS AT THE FAST FLUX TEST FACILITY (open access)

BENCHMARK EVALUATION OF THE INITIAL ISOTHERMAL PHYSICS MEASUREMENTS AT THE FAST FLUX TEST FACILITY

The benchmark evaluation of the initial isothermal physics tests performed at the Fast Flux Test Facility, in support of Fuel Cycle Research and Development and Generation-IV activities at the Idaho National Laboratory, has been completed. The evaluation was performed using MCNP5 with ENDF/B-VII.0 nuclear data libraries and according to guidelines provided for inclusion in the International Reactor Physics Experiment Evaluation Project Handbook. Results provided include evaluation of the initial fully-loaded core critical, two neutron spectra measurements near the axial core center, 32 reactivity effects measurements (21 control rod worths, two control rod bank worths, six differential control rod worths, two shutdown margins, and one excess reactivity), isothermal temperature coefficient, and low-energy electron and gamma spectra measurements at the core center. All measurements were performed at 400 ºF. There was good agreement between the calculated and benchmark values for the fully-loaded core critical eigenvalue, reactivity effects measurements, and isothermal temperature coefficient. General agreement between benchmark experiment measurements and calculated spectra for neutrons and low-energy gammas at the core midplane exists, but calculations of the neutron spectra below the core and the low-energy gamma spectra at core midplane did not agree well. Homogenization of core components may have had a significant impact …
Date: May 1, 2010
Creator: Bess, John Darrell
Object Type: Article
System: The UNT Digital Library
BENCHMARK EVALUATION OF THE START-UP CORE REACTOR PHYSICS MEASUREMENTS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR (open access)

BENCHMARK EVALUATION OF THE START-UP CORE REACTOR PHYSICS MEASUREMENTS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR

The benchmark evaluation of the start-up core reactor physics measurements performed with Japan’s High Temperature Engineering Test Reactor, in support of the Next Generation Nuclear Plant Project and Very High Temperature Reactor Program activities at the Idaho National Laboratory, has been completed. The evaluation was performed using MCNP5 with ENDF/B-VII.0 nuclear data libraries and according to guidelines provided for inclusion in the International Reactor Physics Experiment Evaluation Project Handbook. Results provided include updated evaluation of the initial six critical core configurations (five annular and one fully-loaded). The calculated keff eigenvalues agree within 1s of the benchmark values. Reactor physics measurements that were evaluated include reactivity effects measurements such as excess reactivity during the core loading process and shutdown margins for the fully-loaded core, four isothermal temperature reactivity coefficient measurements for the fully-loaded core, and axial reaction rate measurements in the instrumentation columns of three core configurations. The calculated values agree well with the benchmark experiment measurements. Fully subcritical and warm critical configurations of the fully-loaded core were also assessed. The calculated keff eigenvalues for these two configurations also agree within 1s of the benchmark values. The reactor physics measurement data can be used in the validation and design development of …
Date: May 1, 2010
Creator: Bess, John Darrell
Object Type: Article
System: The UNT Digital Library
Beyond the Standard Model (open access)

Beyond the Standard Model

'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or …
Date: May 1, 2010
Creator: Lykken, Joseph D.
Object Type: Article
System: The UNT Digital Library
Billion-atom Synchronous Parallel Kinetic Monte Carlo Simulations of Critical 3D Ising Systems (open access)

Billion-atom Synchronous Parallel Kinetic Monte Carlo Simulations of Critical 3D Ising Systems

None
Date: May 25, 2010
Creator: Martinez, E.; Monasterio, P. R. & Marian, J.
Object Type: Article
System: The UNT Digital Library
Biodiesel Drives Florida Power & Light's EPAct Alternative Compliance Strategy; EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet) (open access)

Biodiesel Drives Florida Power & Light's EPAct Alternative Compliance Strategy; EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)

This success story highlights how Florida Power & Light Company has successfully complied with the Energy Policy Act of 1992 (EPAct) through Alternative Compliance using biodiesel technologies and how it has become a biofuel leader, reducing petroleum use and pollutant emissions throughout Florida.
Date: May 1, 2010
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Biosafety Manual (open access)

Biosafety Manual

Work with or potential exposure to biological materials in the course of performing research or other work activities at Lawrence Berkeley National Laboratory (LBNL) must be conducted in a safe, ethical, environmentally sound, and compliant manner. Work must be conducted in accordance with established biosafety standards, the principles and functions of Integrated Safety Management (ISM), this Biosafety Manual, Chapter 26 (Biosafety) of the Health and Safety Manual (PUB-3000), and applicable standards and LBNL policies. The purpose of the Biosafety Program is to protect workers, the public, agriculture, and the environment from exposure to biological agents or materials that may cause disease or other detrimental effects in humans, animals, or plants. This manual provides workers; line management; Environment, Health, and Safety (EH&S) Division staff; Institutional Biosafety Committee (IBC) members; and others with a comprehensive overview of biosafety principles, requirements from biosafety standards, and measures needed to control biological risks in work activities and facilities at LBNL.
Date: May 18, 2010
Creator: King, Bruce W.
Object Type: Report
System: The UNT Digital Library
BMSSM Higgs Bosons at the Tevatron and the LHC (open access)

BMSSM Higgs Bosons at the Tevatron and the LHC

We study extensions of the Minimal Supersymmetric Standard Model (MSSM) with new degrees of freedom that couple sizably to the MSSM Higgs sector and lie in the TeV range. After integrating out the physics at the TeV scale, the resulting Higgs spectrum can significantly differ from typical supersymmetric scenarios, thereby providing a window Beyond the MSSM (BMSSM). Taking into account current LEP and Tevatron constraints, we perform an in-depth analysis of the Higgs collider phenomenology and explore distinctive characteristics of our scenario with respect to both the Standard Model and the MSSM. We propose benchmark scenarios to illustrate specific features of BMSSM Higgs searches at the Tevatron and the LHC.
Date: May 1, 2010
Creator: Carena, Marcela; /Fermilab /Chicago U., EFI; Ponton, Eduardo; U., /Columbia; Zurita, Jose & U., /Zurich
Object Type: Article
System: The UNT Digital Library
Bogoliubov Angle, Particle-Hole Mixture and Angular Resolved Photoemission Spectroscopy in Superconductors (open access)

Bogoliubov Angle, Particle-Hole Mixture and Angular Resolved Photoemission Spectroscopy in Superconductors

Superconducting excitations - Bogoliubov quasiparticles - are the quantum mechanical mixture of negatively charged electron (-e) and positively charged hole (+e). We propose a new observable for Angular Resolved Photoemission Spectroscopy (ARPES) studies that is the manifestation of the particle-hole entanglement of the superconducting quasiparticles. We call this observable a Bogoliubov angle. This angle measures the relative weight of particle and hole amplitude in the superconducting (Bogoliubov) quasiparticle. We show how this quantity can be measured by comparing the ratio of spectral intensities at positive and negative energies.
Date: May 4, 2010
Creator: Balatsky, A.
Object Type: Article
System: The UNT Digital Library
Bragg Diffraction Using a 100ps 17.5 Kev X-Ray Backlighter and the Bragg Diffraction Imager (open access)

Bragg Diffraction Using a 100ps 17.5 Kev X-Ray Backlighter and the Bragg Diffraction Imager

A new diagnostic for measuring Bragg diffraction from a laser-driven crystal using a 100ps 17.5 kV x-ray backlighter source is designed and tested successfully at the Omega EP laser facility on static Mo and Ta single crystal samples using a Mo Ka backlighter. The Bragg Diffraction Imager (BDI) consists of a heavily shielded enclosure and a precisely positioned beam block, attached to the main enclosure by an Aluminum arm. Image plate is used as the x-ray detector. The diffraction lines from Mo and Ta <222> planes are clearly detected with a high signal-to-noise using the 17.5 keV and 19.6 keV characteristic lines generated by a petawatt-driven Mo foil. This technique will be applied to shock and ramp-loaded single crystals on the Omega EP laser. Pulsed x-ray diffraction of shock- and ramp-compressed materials is an exciting new technique that can give insight into the dynamic behavior of materials at ultra-high pressure not achievable by any other means to date. X-ray diffraction can be used to determine not only the phase and compression of the lattice at high pressure, but by probing the lattice compression on a timescale equal to the 3D relaxation time of the material, information about dislocation mechanics, including …
Date: May 13, 2010
Creator: Maddox, B. R.; Park, H.; Hawreliak, J.; Comley, A.; Elsholz, A.; Van Maren, R. et al.
Object Type: Article
System: The UNT Digital Library
Bunch-by-bunch detection of coherent transverse modes from digitized single-bpm signals in the Tevatron (open access)

Bunch-by-bunch detection of coherent transverse modes from digitized single-bpm signals in the Tevatron

A system was developed for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations based on the signal from a single beam-position monitor (BPM) located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, the beam is excited with band-limited noise for about one second, and this was shown not to significantly affect the circulating beams even at high luminosity. The system is used to measure betatron tunes of individual bunches and to study beam-beam effects. In particular, it is one of the main diagnostic tools in an ongoing study of nonlinear beam-beam compensation studies with Gaussian electron lenses. We present the design and operation of this tool, together with results obtained with proton and antiproton bunches.
Date: May 1, 2010
Creator: Stancari, G.; Valishev, A.; Semenov, A. & /Fermilab
Object Type: Article
System: The UNT Digital Library
Bunch Length Effects in the Beam-Beam Compensation With an Electron Lens (open access)

Bunch Length Effects in the Beam-Beam Compensation With an Electron Lens

N/A
Date: May 23, 2010
Creator: Fischer, W.
Object Type: Article
System: The UNT Digital Library
Business Continuity Planning Resources for Small- and Medium-Sized Businesses (open access)

Business Continuity Planning Resources for Small- and Medium-Sized Businesses

This document/memo summarizes existing resources and guidance on business continuity planning for small- to medium-sized businesses. DTRA will share this information with large commercial businesses who identified the need to help their suppliers and other key collaborators prepare business continuity plans in order to speed recovery from a wide-area bioterrorism incident.
Date: May 14, 2010
Creator: Judd, Kathleen S. & Lesperance, Ann M.
Object Type: Report
System: The UNT Digital Library
Calibration of a Flat Field Soft X-ray Grating Spectrometer for Laser Produced Plasmas (open access)

Calibration of a Flat Field Soft X-ray Grating Spectrometer for Laser Produced Plasmas

We have calibrated the x ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL, and at both the Omega and Omega EP lasers at University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range from {approx} 6 to 60 {angstrom}. The calibration results present here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from hydrogen-like and helium-like ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x ray intensities recorded by the VSG to those simultaneously recorded by an x ray microcalorimeter spectrometer.
Date: May 12, 2010
Creator: Park, J.; Brown, G. V.; Schneider, M. B.; Baldis, H. A.; Beiersdorfer, P.; Cone, K. V. et al.
Object Type: Article
System: The UNT Digital Library