Mercury Specie and Multi-Pollutant Control (open access)

Mercury Specie and Multi-Pollutant Control

This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and …
Date: May 31, 2010
Creator: James, Rob; Joffrion, Virgil; McDermott, John & Piche, Steve
Object Type: Report
System: The UNT Digital Library
Micro-fluidic (Lab-on the- Chip) PCR Array Cartridge for Biological Screening in a Hand Held Device: FInal Report for CRADA no 264. PNNL-T2-258-RU with CombiMatrix Corp (open access)

Micro-fluidic (Lab-on the- Chip) PCR Array Cartridge for Biological Screening in a Hand Held Device: FInal Report for CRADA no 264. PNNL-T2-258-RU with CombiMatrix Corp

The worldwide emergence of both new and old diseases resulting from human expansion and also human and materials mobility has and will continue to place stress on both medical and clinical diagnostics. The classical approach to bioagents detection involves the use of differential metabolic assays to determine species type in the case of most bacteria, or the use of cell culture and electron microscopy to diagnose viruses and some bacteria that are intracellular parasites. The long-term goal in bioagent detection is to develop a hand-held instrument featuring disposable cartridges which contain all the necessary reagents, reaction chambers, waste chambers, and micro-fluidics to extract, concentrate, amplify, and analyze nucleic acids. This GIPP project began development of a sensory platform using nucleic-acid based probes. Although research was not completed, initial findings indicated that an advanced sensing device could theoretically be built on a DNA/RNA-based technology platform.
Date: October 31, 2010
Creator: Rainina, Evguenia I.
Object Type: Report
System: The UNT Digital Library
Model Predictive Control of Integrated Gasification Combined Cycle Power Plants (open access)

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on …
Date: August 31, 2010
Creator: Bequette, B. Wayne & Mahapatra, Priyadarshi
Object Type: Report
System: The UNT Digital Library
Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal (open access)

Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive …
Date: August 31, 2010
Creator: Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim & Birkholzer, Jens
Object Type: Report
System: The UNT Digital Library
Modern Calculations of Pulsed-Sphere Time-of-Flight Experiments Using the Mercury Monte Carlo Transport Code (open access)

Modern Calculations of Pulsed-Sphere Time-of-Flight Experiments Using the Mercury Monte Carlo Transport Code

None
Date: August 31, 2010
Creator: Procassini, R. J. & McKinley, M. S.
Object Type: Article
System: The UNT Digital Library
Modular Energy Storage System for Hydrogen Fuel Cell Vehicles (open access)

Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles – plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.
Date: May 31, 2010
Creator: Thomas, Janice
Object Type: Report
System: The UNT Digital Library
Multi-Faceted Scientific Strategies Toward Better Solid-State Lighting of Phosphorescent OLEDs (open access)

Multi-Faceted Scientific Strategies Toward Better Solid-State Lighting of Phosphorescent OLEDs

This project has advanced solid-state lighting (SSL) by utilizing new phosphorescent systems for use in organic light-emitting diodes (OLEDs). The technical approach was two-fold: a) Targeted synthesis and screening of emitters designed to exhibit phosphorescence with maximized brightness in the solid state; and b) Construction and optimizing the performance of monochromatic and white OLEDs from the best new emitters to improve performance metrics versus the state of the art. The phosphorescent systems were screened candidates among a large variety of recentlysynthesized and newly-designed molecular and macromolecular metal-organic phosphors. The emitters and devices have been optimized to maximize light emission and color metrics, improve the long-term durability of emitters and devices, and reduce the manufacturing cost both by simplifying the process flow and by seeking less expensive device components than common ones. The project succeeded in all these goals upon comparison of the best materials and devices investigated vs. the state of the art of the technology.
Date: August 31, 2010
Creator: Omary, Mohammad; Gnade, Bruce; Wang, Qi; Elbjeirami, Oussama; Yang, Chi; Shepherd, Nigel et al.
Object Type: Report
System: The UNT Digital Library
Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen (open access)

Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

The main focus during the period of research at UTK was on developing a mathematically rigorous and at the same time computationally flexible framework for parallelization of Kinetic Monte Carlo methods, and its implementation on multi-core architectures. Another direction of research aimed towards spatial multilevel coarse graining methods for Monte Carlo sampling and molecular simulation. The underlying theme of both of this topics was the development of numerical methods that lead to efficient and reliable simulations supported by error analysis of involved approximation schemes for coarse observables of the simulated molecular system. The work on both of these topics resulted in publications.
Date: August 31, 2010
Creator: Plechac, Petr
Object Type: Report
System: The UNT Digital Library
New Features of the Mercury Monte Carlo Particle Transport Code (open access)

New Features of the Mercury Monte Carlo Particle Transport Code

None
Date: August 31, 2010
Creator: Procassini, R J; Brantley, P S; Dawson, S A; Greenman, G M; McKinley, M S; O'Brien, M J et al.
Object Type: Article
System: The UNT Digital Library
A new Scanning Transmission X-ray Microscope at the ALS for operation up to 2500eV (open access)

A new Scanning Transmission X-ray Microscope at the ALS for operation up to 2500eV

We report on the design and construction of a higher energy Scanning Transmission X-ray Microscope on a new bend magnet beam line at the Advanced Light Source. Previously we have operated such an instrument on a bend magnet for C, N and O 1s NEXAFS spectroscopy. The new instrument will have similar performance at higher energies up to and including the S 1s edge at 2472eV. A new microscope configuration is planned. A more open geometry will allow a fluorescence detector to count emitted photons from the front surface of the sample. There will be a capability for zone plate scanning in addition to the more conventional sample scanning mode. This will add the capability for imaging a massive sample at high resolution over a limited field of view, so that heavy reaction cells may be used to study processes in-situ, exploiting the longer photon attenuation length and the longer zone plate working distances available at higher photon energy. The energy range will extend down to include the C1s edge at 300eV, to allow high energy NEXAFS microscopic studies to correlate with the imaging of organics in the same sample region of interest.
Date: January 31, 2010
Creator: Kilcoyne, David; Ade, Harald; Attwood, David; Hitchcock, Adam; McKean, Pat; Mitchell, Gary et al.
Object Type: Article
System: The UNT Digital Library
Novel Adsorbent-Reactants for Treatment of Ash and Scrubber Pond Effluents (open access)

Novel Adsorbent-Reactants for Treatment of Ash and Scrubber Pond Effluents

The overall goal of this project was to evaluate the ability of novel adsorbent/reactants to remove specific toxic target chemicals from ash and scrubber pond effluents while producing stable residuals for ultimate disposal. The target chemicals studied were arsenic (As(III) and As(V)), mercury (Hg(II)) and selenium (Se(IV) and Se(VI)). The adsorbent/reactants that were evaluated are iron sulfide (FeS) and pyrite (FeS{sub 2}). Procedures for measuring concentrations of target compounds and characterizing the surfaces of adsorbent-reactants were developed. Effects of contact time, pH (7, 8, 9, 10) and sulfate concentration (0, 1, 10 mM) on removal of all target compounds on both adsorbent-reactants were determined. Stability tests were conducted to evaluate the extent to which target compounds were released from the adsorbent-reactants when pH changed. Surface characterization was conducted with x-ray photoelectron spectroscopy (XPS) to identify reactions occurring on the surface between the target compounds and surface iron and sulfur. Results indicated that target compounds could be removed by FeS{sub 2} and FeS and that removal was affected by time, pH and surface reactions. Stability of residuals was generally good and appeared to be affected by the extent of surface reactions. Synthesized pyrite and mackinawite appear to have the required characteristics …
Date: January 31, 2010
Creator: Batchelor, Bill; Han, Dong Suk & Kim, Eun Jung
Object Type: Report
System: The UNT Digital Library
Novel Hydrogen Purification Device Integrated with PEM Fuel Cells (open access)

Novel Hydrogen Purification Device Integrated with PEM Fuel Cells

A prototype device containing twelve membrane tubes was designed, built, and demonstrated. The device produced almost 300 scfh of purified hydrogen at 200 psig feed pressure. The extent of purification met the program target of selectively removing enough impurities to enable industrial-grade hydrogen to meet purity specifications for PEM fuel cells. An extrusion process was developed to produce substrate tubes. Membranes met several test objectives, including completing 20 thermal cycles, exceeding 250 hours of operating life, and demonstrating a flux of 965 scfh/ft2 at 200 psid and 400 C.
Date: December 31, 2010
Creator: Schwartz, Joseph; Lim, Hankwon & Drnevich, Raymond
Object Type: Report
System: The UNT Digital Library
Optimally Controlled Flexible Fuel Powertrain System (open access)

Optimally Controlled Flexible Fuel Powertrain System

The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.
Date: December 31, 2010
Creator: Yilmaz, Hakan; Christie, Mark & Stefanopoulou, Anna
Object Type: Report
System: The UNT Digital Library
Phase-space Dynamics of Runaway Electrons In Tokamaks (open access)

Phase-space Dynamics of Runaway Electrons In Tokamaks

The phase-space dynamics of runaway electrons is studied, including the influence of loop voltage, radiation damping, and collisions. A theoretical model and a numerical algorithm for the runaway dynamics in phase space are developed. Instead of standard integrators, such as the Runge-Kutta method, a variational symplectic integrator is applied to simulate the long-term dynamics of a runaway electron. The variational symplectic integrator is able to globally bound the numerical error for arbitrary number of time-steps, and thus accurately track the runaway trajectory in phase space. Simulation results show that the circulating orbits of runaway electrons drift outward toward the wall, which is consistent with experimental observations. The physics of the outward drift is analyzed. It is found that the outward drift is caused by the imbalance between the increase of mechanical angular momentum and the input of toroidal angular momentum due to the parallel acceleration. An analytical expression of the outward drift velocity is derived. The knowledge of trajectory of runaway electrons in configuration space sheds light on how the electrons hit the first wall, and thus provides clues for possible remedies.
Date: August 31, 2010
Creator: Guan, Xiaoyin; Qin, Hong & Fisch, Nathaniel J.
Object Type: Report
System: The UNT Digital Library
Phasing beams with different dispersions and application to the Petawatt-class beamline at the National Ignition Facility (open access)

Phasing beams with different dispersions and application to the Petawatt-class beamline at the National Ignition Facility

None
Date: August 31, 2010
Creator: Homoelle, D; Crane, J K; Shverdin, M; Haefner, C L & Siders, C W
Object Type: Article
System: The UNT Digital Library
Phosphor Systems for Illumination Quality Solid State Lighting Products: Final Technical Report (open access)

Phosphor Systems for Illumination Quality Solid State Lighting Products: Final Technical Report

The objective of this program is to develop phosphor systems that will enable LED lamps with 96 lm/W efficacy at correlated color temperatures, (CCTs) ~3000 K, and color rendering indices (CRIs) >80 and 71 lm/W efficacy at CCT<3100 K and CRI~95 using phosphor downconversion of LEDs. This primarily involves the invention and development of new phosphor materials that have improved efficiency and better match the eye sensitivity curves.
Date: March 31, 2010
Creator: Setlur, Anant; Briel, Linda; Cleaver, Robert; Clothier, Brent; Gao, Yan; Harlow, Richard et al.
Object Type: Report
System: The UNT Digital Library
Photon Science for Renewable Energy (open access)

Photon Science for Renewable Energy

Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.
Date: March 31, 2010
Creator: Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob & Bailey, Sue
Object Type: Report
System: The UNT Digital Library
Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems (open access)

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial …
Date: December 31, 2010
Creator: Blythe, Gary; Braman, Conor; Dombrowski, Katherine & Machalek, Tom
Object Type: Report
System: The UNT Digital Library
Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development (open access)

Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand …
Date: December 31, 2010
Creator: Ruple, John & Keiter, Robert
Object Type: Report
System: The UNT Digital Library
Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada Test Site, Nevada, for Fiscal Year 2009 (open access)

Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada Test Site, Nevada, for Fiscal Year 2009

This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): · CAU 90, Area 2 Bitcutter Containment · CAU 91, Area 3 U-3fi Injection Well · CAU 92, Area 6 Decon Pond Facility · CAU 110, Area 3 WMD U-3ax/bl Crater · CAU 112, Area 23 Hazardous Waste Trenches This report covers fiscal year 2009 (October 2008–September 2009). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0021 and summarized in each CAU-specific section in Section 1.0 of this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches in a 24-hour period. Inspections include an evaluation of the condition of the units and identification of any deficiencies that may compromise the integrity of the units. The condition of covers, fencing, signs, gates, and locks is documented. In addition, soil moisture monitoring and subsidence surveys are conducted at CAU 110. The results of the inspections, summary of maintenance activities, results of vegetations surveys, and analysis of monitoring data are …
Date: January 31, 2010
Creator: National Security Technologies, LLC
Object Type: Report
System: The UNT Digital Library
Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems (open access)

Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems

Hydrogen (H2) offers advantages as an energy carrier: minimal discharge of pollutants, production from multiple sources, increased thermodynamic efficiencies compared to fossil fuels, and reduced dependence on foreign oil. However, potential impacts from the H2 generation processes, transport and distribution of H2, and releases of H2 into the atmosphere have been proposed. The goal of this project was to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, materials and structures. This project was part of a larger effort by DOE to assess the life-cycle costs and benefits and environmental impacts to inform decisions regarding future hydrogen research. Technical Approach: A modeling approach was developed and used to evaluate the potential environmental effects associated with the conversion of the on-road vehicle fleet from fossil-fuel vehicles to hydrogen fuel cell vehicles. GATOR-GCMOM was the primary tool used to predict atmospheric concentrations of gases and aerosols for selected scenarios. This model accounts for all feedbacks among major atmospheric processes based on first principles. The future scenarios and the emission rates selected for this analysis of hydrogen environmental effects are based on the scenarios developed by IPCC. The scenarios selected for the model simulations …
Date: December 31, 2010
Creator: Grieb, Thomas M.; Mills, W. B.; Jacobson, Mark Z.; Summers, Karen V. & Crossan, A. Brook
Object Type: Report
System: The UNT Digital Library
Preliminary Evaluation of the Impact of the Section 1603 Treasury Grant Program on Renewable Energy Deployment in 2009 (open access)

Preliminary Evaluation of the Impact of the Section 1603 Treasury Grant Program on Renewable Energy Deployment in 2009

Federal support for renewable energy deployment in the United States has traditionally been delivered primarily through tax benefits, including the production tax credit ('PTC') in Section 45 of the U.S. tax code, investment tax credits ('ITC') in Sections 25D and 48, and accelerated tax depreciation in Section 168. Many renewable power project developers are unable to use the majority of these tax benefits directly or immediately, however, and have therefore often relied on third-party 'tax equity' investors for the necessary investment capital in order to monetize the available tax benefits. As has been well-publicized, most of these tax equity investors were hit hard by the global financial crisis that unfolded in the last months of 2008 and, as a result, most either withdrew from the renewable power market at that time or reduced their available investment capital. This left a significant financing gap beginning in late 2008, and placed at some risk the continued near-term growth of renewable energy supply in the U.S. In recognition of these developments, the U.S. Congress passed two stimulus bills - The Energy Improvement and Extension Act ('the Extension Act') in October 2008 and The American Recovery and Reinvestment Act ('the Recovery Act') in February …
Date: March 31, 2010
Creator: Bolinger, Mark; Wiser, Ryan & Darghouth, Naim
Object Type: Report
System: The UNT Digital Library
PRIDE Surveillance Projects Data Packaging Project Information Package Specification Version 1.1 (open access)

PRIDE Surveillance Projects Data Packaging Project Information Package Specification Version 1.1

Information Package Specification version 1.1 describes an XML document format called an information package that can be used to store information in information management systems and other information archives. An information package consists of package information, the context required to understand and use that information, package metadata that describes the information, and XML signatures that protect the information. The information package described in this specification was designed to store Department of Energy (DOE) and National Nuclear Security Administration (NNSA) information and includes the metadata required for that information: a unique package identifier, information marking that conforms to DOE and NNSA requirements, and access control metadata. It is an implementation of the Open Archival Information System (OAIS) Reference Model archival information package tailored to meet NNSA information storage requirements and designed to be used in the computing environments at the Y-12 National Security Complex and at other NNSA sites.
Date: August 31, 2010
Creator: Kelleher, D. M.; Shipp, R. L. & Mason, J. D.
Object Type: Report
System: The UNT Digital Library
The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications (open access)

The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.
Date: March 31, 2010
Creator: Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas & Stout, Tyson E.
Object Type: Report
System: The UNT Digital Library