3-D Mapping Technologies for High Level Waste Tanks (open access)

3-D Mapping Technologies for High Level Waste Tanks

This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be …
Date: August 31, 2010
Creator: Marzolf, A. & Folsom, M.
Object Type: Article
System: The UNT Digital Library
100 LPW 800 Lm Warm White LED (open access)

100 LPW 800 Lm Warm White LED

An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called Lumiramic™ and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The …
Date: October 31, 2010
Creator: Sun, Decai
Object Type: Report
System: The UNT Digital Library
ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS (open access)

ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar …
Date: July 31, 2010
Creator: Musich, Mark A.; Swanson, Michael L.; Dunham, Grant E. & Stanislowski, Joshua J.
Object Type: Report
System: The UNT Digital Library
Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization (open access)

Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization

Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine …
Date: January 31, 2010
Creator: Smutzer, Chad
Object Type: Report
System: The UNT Digital Library
Advances in coupled safety modeling using systems analysis and high-fidelity methods. (open access)

Advances in coupled safety modeling using systems analysis and high-fidelity methods.

The potential for a sodium-cooled fast reactor to survive severe accident initiators with no damage has been demonstrated through whole-plant testing in EBR-II and FFTF. Analysis of the observed natural protective mechanisms suggests that they would be characteristic of a broad range of sodium-cooled fast reactors utilizing metal fuel. However, in order to demonstrate the degree to which new, advanced sodium-cooled fast reactor designs will possess these desired safety features, accurate, high-fidelity, whole-plant dynamics safety simulations will be required. One of the objectives of the advanced safety-modeling component of the Reactor IPSC is to develop a science-based advanced safety simulation capability by utilizing existing safety simulation tools coupled with emerging high-fidelity modeling capabilities in a multi-resolution approach. As part of this integration, an existing whole-plant systems analysis code has been coupled with a high-fidelity computational fluid dynamics code to assess the impact of high-fidelity simulations on safety-related performance. With the coupled capabilities, it is possible to identify critical safety-related phenomenon in advanced reactor designs that cannot be resolved with existing tools. In this report, the impact of coupling is demonstrated by evaluating the conditions of outlet plenum thermal stratification during a protected loss of flow transient. Outlet plenum stratification was …
Date: May 31, 2010
Creator: Fanning, T. H.; Thomas, J. W. & Division, Nuclear Engineering
Object Type: Report
System: The UNT Digital Library
American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration Project 209 - Control Tower and Support Building, Las Vegas, NV (open access)

American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration Project 209 - Control Tower and Support Building, Las Vegas, NV

This report represents findings of a design review team that evaluated construction documents (at the 70% level) and operating specifications for a new control tower and support building that will be built in Las Vegas, Nevada by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specification that would result in additional energy savings for the FAA that would not have otherwise occurred.
Date: March 31, 2010
Creator: Arends, J. & Sandusky, William F.
Object Type: Report
System: The UNT Digital Library
American Recovery and Reinvestment Act ( ARRA) FEMP Technical Assistance, U.S. General Services Administration - Project 194 U.S. Custom Cargo Inspection Facility, Detroit, MI (open access)

American Recovery and Reinvestment Act ( ARRA) FEMP Technical Assistance, U.S. General Services Administration - Project 194 U.S. Custom Cargo Inspection Facility, Detroit, MI

This report documents the findings of an on-site audit of the U.S. Customs Cargo Inspection Facility (CIF) in Detroit, Michigan. The federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy-efficiency opportunities that, once implemented, would reduce electrical and gas consumption and increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.
Date: May 31, 2010
Creator: Arends, J. & Sandusky, William F.
Object Type: Report
System: The UNT Digital Library
American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance US General Serices Administration - Project 193, John W. Bricker Federal Building, Columbus, OH (open access)

American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance US General Serices Administration - Project 193, John W. Bricker Federal Building, Columbus, OH

This report documents the findings from an onsite audit of the John W. Bricker Federal building located in Columbus, Ohio. The Federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy efficiency opportunities that, once implemented, would either reduce electrical and gas consumption or increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.
Date: May 31, 2010
Creator: Arends, J. & Sandusky, William F.
Object Type: Report
System: The UNT Digital Library
Analysis and Development of A Robust Fuel for Gas-Cooled Fast Reactors (open access)

Analysis and Development of A Robust Fuel for Gas-Cooled Fast Reactors

The focus of this effort was on the development of an advanced fuel for gas-cooled fast reactor (GFR) applications. This composite design is based on carbide fuel kernels dispersed in a ZrC matrix. The choice of ZrC is based on its high temperature properties and good thermal conductivity and improved retention of fission products to temperatures beyond that of traditional SiC based coated particle fuels. A key component of this study was the development and understanding of advanced fabrication techniques for GFR fuels that have potential to reduce minor actinide (MA) losses during fabrication owing to their higher vapor pressures and greater volatility. The major accomplishments of this work were the study of combustion synthesis methods for fabrication of the ZrC matrix, fabrication of high density UC electrodes for use in the rotating electrode process, production of UC particles by rotating electrode method, integration of UC kernels in the ZrC matrix, and the full characterization of each component. Major accomplishments in the near-term have been the greater characterization of the UC kernels produced by the rotating electrode method and their condition following the integration in the composite (ZrC matrix) following the short time but high temperature combustion synthesis process. This …
Date: January 31, 2010
Creator: Knight, Travis W
Object Type: Report
System: The UNT Digital Library
Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site (open access)

Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities …
Date: March 31, 2010
Creator: Programs, NSTec Environmental
Object Type: Report
System: The UNT Digital Library
Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration (open access)

Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in …
Date: March 31, 2010
Creator: Liner, Christopher; Zeng, Jianjun; Li, Po Geng Heather King Jintan; Califf, Jennifer & Seales, John
Object Type: Report
System: The UNT Digital Library
ARRA FEMP Technical Assistance -- Federal Aviation Administration Project 209 -- Control Tower and Support Building, Palm Springs, CA (open access)

ARRA FEMP Technical Assistance -- Federal Aviation Administration Project 209 -- Control Tower and Support Building, Palm Springs, CA

This report represents findings of a design review team that evaluated construction documents (at the 100% level) and operating specifications for a new control tower and support building that will be built in Palm Springs, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.
Date: March 31, 2010
Creator: Arends, J. & Sandusky, William F.
Object Type: Report
System: The UNT Digital Library
Arsenic Water Technology Partnership Final Technical Report (open access)

Arsenic Water Technology Partnership Final Technical Report

Congress created the Arsenic Water Technology Partnership (AWTP) in 2002 to develop and provide solutions for the cost-effective removal of arsenic from drinking water. The AWTP was funded by four congressional appropriations (FY03-FY06) to evaluate and develop new technologies that could significantly reduce compliance costs associated with the new 0.010 mg/L maximum contaminant level (MCL) for arsenic in drinking water. Initially focused on arsenic research, in FY06 the AWTP was expanded to include desalination research upon recognition that the research challenges were similar. The funding for the research and subsequent transfer of technology was made available by Congress through the Department of Energy (DOE). The AWTP was a collaborative effort between DOE’s Sandia National Laboratories (Sandia), Water Research Foundation (WaterRF, formerly Awwa Research Foundation) and WERC: A Consortium for Environmental Education and Technology Development based at New Mexico State University (WERC). Key features of the AWTP included technology development, technology implementation/testing and technology transfer. Each of the partners evaluated and oversaw development of new arsenic and desalination treatment technologies, and the technology transfer program ensured that successful technologies were transferred to the water supply community. Through the use of an arsenic treatment cost model, training sessions and a web site, …
Date: December 31, 2010
Creator: Ilges, A., Thompson, R., Campbell, C.
Object Type: Report
System: The UNT Digital Library
Attributes of the Federal Energy Management Program's Federal Site Building Characteristics Database (open access)

Attributes of the Federal Energy Management Program's Federal Site Building Characteristics Database

Typically, the Federal building stock is referred to as a group of about one-half million buildings throughout the United States. Additional information beyond this level is generally limited to distribution of that total by agency and maybe distribution of the total by state. However, additional characterization of the Federal building stock is required as the Federal sector seeks ways to implement efficiency projects to reduce energy and water use intensity as mandated by legislation and Executive Order. Using a Federal facility database that was assembled for use in a geographic information system tool, additional characterization of the Federal building stock is provided including information regarding the geographical distribution of sites, building counts and percentage of total by agency, distribution of sites and building totals by agency, distribution of building count and floor space by Federal building type classification by agency, and rank ordering of sites, buildings, and floor space by state. A case study is provided regarding how the building stock has changed for the Department of Energy from 2000 through 2008.
Date: December 31, 2010
Creator: Loper, Susan A. & Sandusky, William F.
Object Type: Report
System: The UNT Digital Library
Black Silicon Enhanced Thin Film Silicon Photovoltaic Devices (open access)

Black Silicon Enhanced Thin Film Silicon Photovoltaic Devices

SiOnyx has developed an enhanced thin film silicon photovoltaic device with improved efficiency. Thin film silicon solar cells suffer from low material absorption characteristics resulting in poor cell efficiencies. SiOnyx’s approach leverages Black Silicon, an advanced material fabricated using ultrafast lasers. The laser treated films show dramatic enhancement in optical absorption with measured values in excess of 90% in the visible spectrum and well over 50% in the near infrared spectrum. Thin film Black Silicon solar cells demonstrate 25% higher current generation with almost no impact on open circuit voltage as compared with representative control samples. The initial prototypes demonstrated an improvement of nearly 2 percentage points in the suns Voc efficiency measurement. In addition we validated the capability to scale this processing technology to the throughputs (< 5 min/m2) required for volume production using state of the art commercially available high power industrial lasers. With these results we clearly demonstrate feasibility for the enhancement of thin film solar cells with this laser processing technique.
Date: July 31, 2010
Creator: Pralle, Martin U. & Carey, James E.
Object Type: Report
System: The UNT Digital Library
Building America (open access)

Building America

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality …
Date: December 31, 2010
Creator: Oberg, Brad
Object Type: Report
System: The UNT Digital Library
Building America (open access)

Building America

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.
Date: December 31, 2010
Creator: Oberg, Brad
Object Type: Report
System: The UNT Digital Library
Building America (open access)

Building America

None
Date: December 31, 2010
Creator: Oberg, Brad
Object Type: Report
System: The UNT Digital Library
Building America: Appendix 4.A. Insight Homes: Marketability Supporting Materials (open access)

Building America: Appendix 4.A. Insight Homes: Marketability Supporting Materials

This report talks about the company Insight Homes. Insight homes is a builder company that helps make one research processes as easy as possible.
Date: December 31, 2010
Creator: Oberg, Brad
Object Type: Report
System: The UNT Digital Library
Building Materials Reclamation Program (open access)

Building Materials Reclamation Program

This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&amp;D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&amp;D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, …
Date: August 31, 2010
Creator: Weggel, David C.; Chen, Shen-En; Hilger, Helene; Besnard, Fabien; Cavalline, Tara; Tempest, Brett et al.
Object Type: Report
System: The UNT Digital Library
Calculation of 239Pu fission observables in an event-by-event simulation (open access)

Calculation of 239Pu fission observables in an event-by-event simulation

The increased interest in more exclusive fission observables has demanded more detailed models. We describe a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including any interesting correlations. The various model assumptions are described and the potential utility of the model is illustrated. As a concrete example, we use formal statistical methods, experimental data on neutron production in neutron-induced fission of {sup 239}Pu, along with FREYA, to develop quantitative insights into the relation between reaction observables and detailed microscopic aspects of fission. Current measurements of the mean number of prompt neutrons emitted in fission taken together with less accurate current measurements for the prompt post-fission neutron energy spectrum, up to the threshold for multi-chance fission, place remarkably fine constraints on microscopic theories.
Date: March 31, 2010
Creator: Vogt, R; Randrup, J; Pruet, J & Younes, W
Object Type: Article
System: The UNT Digital Library
Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro (open access)

Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro

The major goal of this study is to determine the effects of the Fhit pathway on low dose ({le} 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repair genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose …
Date: May 31, 2010
Creator: Wang, Ya
Object Type: Report
System: The UNT Digital Library
Clean and Efficient Diesel Engine (open access)

Clean and Efficient Diesel Engine

Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.
Date: December 31, 2010
Creator: unknown
Object Type: Report
System: The UNT Digital Library
CO{sub 2} Reuse in Petrochemical Facilities (open access)

CO{sub 2} Reuse in Petrochemical Facilities

To address public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is actively funding a CO{sub 2} management program to develop technologies capable of mitigating CO{sub 2} emissions from power plant and industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE/NETL launched an alternative CO{sub 2} mitigation program focused on beneficial CO{sub 2} reuse to support the development of technologies that mitigate emissions by converting CO{sub 2} into valuable chemicals and fuels. RTI, with DOE/NETL support, has been developing an innovative beneficial CO{sub 2} reuse process for converting CO{sub 2} into substitute natural gas (SNG) by using by-product hydrogen (H{sub 2)-containing fuel gas from petrochemical facilities. This process leveraged commercial reactor technology currently used in fluid catalytic crackers in petroleum refining and a novel nickel (Ni)-based catalyst developed by RTI. The goal was to generate an SNG product that meets the pipeline specifications for natural gas, making the SNG product completely compatible with the existing natural gas infrastructure. RTI's technology development efforts focused on demonstrating the technical feasibility of this novel …
Date: December 31, 2010
Creator: Trembly, Jason; Turk, Brian; Pavani, Maruthi; McCarty, Jon; Boggs, Chris; Jamal, Aqil et al.
Object Type: Report
System: The UNT Digital Library