An Assessment of Molecular Dynamic Force Fields for Silica for Use in Simulating Laser Damage Mitigation (open access)

An Assessment of Molecular Dynamic Force Fields for Silica for Use in Simulating Laser Damage Mitigation

We compare force fields (FF's) that have been used in molecular dynamic (MD) simulations of silica in order to assess their applicability for use in simulating IR-laser damage mitigation. Although pairwise FF?s obtained by fitting quantum mechanical calculations such as the BKS and CHIK potentials have been shown to reproduce many of the properties of silica including the stability of silica polymorphs and the densification of the liquid, we show that melting temperatures and fictive temperatures are much too high. Softer empirical force fields give liquid and glass properties at experimental temperatures but may not predict all properties important to laser mitigation experiments.
Date: October 21, 2010
Creator: Soules, T F; Gilmer, G H; Matthews, M J; Stolken, J S & Feit, M D
System: The UNT Digital Library
Bridging silyl groups in sigma-bond metathesis and [1, 2] shifts. An experimental and computational study of the reaction between cerium metallocenes and MeOSiMe3 (open access)

Bridging silyl groups in sigma-bond metathesis and [1, 2] shifts. An experimental and computational study of the reaction between cerium metallocenes and MeOSiMe3

The reaction of Cp'2CeH (Cp' = 1,2,4-(Me3C)3C5H2 ) with MeOSiMe3 gives Cp'2CeOMe and HSiMe3 and the reaction of the metallacycle, Cp'[(Me3C)2C5H2C(Me) 2CH2]Ce, with MeOSiMe3 yields Cp'2CeOCH2SiMe3, formed from hypothetical Cp'2CeCH2OSiMe3 by a [1, 2] shift also known as a silyl-Wittig rearrangement. Although both cerium products are alkoxides, they are formed by different pathways. DFT calculations on the reaction of the model metallocene, Cp2CeH, and MeOSiMe3 show that the lowest energy pathway is a H for OMe exchange at Ce that occurs by way of a sigma-bond metathesis transition state as SiMe3 exchanges partners. The formation of Cp2CeOCH2SiMe3 occurs by way of a low activation barrier [1, 2]shift of the SiMe3 group in Cp2CeCH2OSiMe3. Calculations on a model metallacycle, Cp[C5H4C(Me)2CH2]Ce, show that the metallacycle favors CH bond activation over sigma-bond metathesis involving the transfer of the SiMe3 group in good agreement with experiment. The sigma-bond metathesis involving the transfer of SiMe3 and the [1, 2]shift of SiMe3 reactions have in common a pentacoordinate silicon at the transition states. A molecular orbital analysis illustrates the connection between these two Si-O bond cleavage reactions and traces the reason why they occur for a silyl but not for an alkyl group to the difference …
Date: April 21, 2010
Creator: Werkema, Evan; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile & Andersen, Richard
System: The UNT Digital Library
The status of open heavy flavor production at RHIC (open access)

The status of open heavy flavor production at RHIC

We discuss the calculation of open heavy flavor cross sections at RHIC and describe how the semileptonic decays of charm and bottom quarks can be separated.
Date: December 21, 2010
Creator: Vogt, R
System: The UNT Digital Library
Direct observation of imprinted antiferromagnetic vortex state in CoO/Fe/Ag(001) disks (open access)

Direct observation of imprinted antiferromagnetic vortex state in CoO/Fe/Ag(001) disks

In magnetic thin films, a magnetic vortex is a state in which the magnetization vector curls around the center of a confined structure. A vortex state in a thin film disk, for example, is a topological object characterized by the vortex polarity and the winding number. In ferromagnetic (FM) disks, these parameters govern many fundamental properties of the vortex such as its gyroscopic rotation, polarity reversal, core motion, and vortex pair excitation. However, in antiferromagnetic (AFM) disks, though there has been indirect evidence of the vortex state through observations of the induced FM-ordered spins in the AFM disk, they have never been observed directly in experiment. By fabricating single crystalline NiO/Fe/Ag(001) and CoO/Fe/Ag(001) disks and using X-ray Magnetic Linear Dichroism (XMLD), we show direct observation of the vortex state in an AFM disk of AFM/FM bilayer system. We observe that there are two types of AFM vortices, one of which has no analog in FM structures. Finally, we show that a frozen AFM vortex can bias a FM vortex at low temperature.
Date: December 21, 2010
Creator: Wu, J.; Carlton, D.; Park, J. S.; Meng, Y.; Arenholz, E.; Doran, A. et al.
System: The UNT Digital Library
Advantages of a soft protective layer for good signal-to-noise ratio proton radiographs in high debris environments (open access)

Advantages of a soft protective layer for good signal-to-noise ratio proton radiographs in high debris environments

None
Date: December 21, 2010
Creator: Le Galloudec, N. R.; Cobble, J.; Nelson, S. L.; Merwin, A.; Paudel, Y.; Shrestha, I. et al.
System: The UNT Digital Library
Quarkonia as a multi-purpose tool (open access)

Quarkonia as a multi-purpose tool

Quarkonia can be a very useful tool for understanding the medium in which they are produced and pass through. However, their usefulness as a tool depends on how well certain aspects of their behavior in cold matter are understood.
Date: December 21, 2010
Creator: Vogt, R
System: The UNT Digital Library
AUTOMATING GROUNDWATER SAMPLING AT HANFORD THE NEXT STEP (open access)

AUTOMATING GROUNDWATER SAMPLING AT HANFORD THE NEXT STEP

Historically, the groundwater monitoring activities at the Department of Energy's Hanford Site in southeastern Washington State have been very "people intensive." Approximately 1500 wells are sampled each year by field personnel or "samplers." These individuals have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from 2 official electronic databases: the Hanford Well information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. A pilot project for automating this extremely tedious process was lauched in 2008. Initially, the automation was focused on water-level measurements. Now, the effort is being extended to automate the meta-data associated with collecting groundwater samples. The project allowed electronic forms produced in the field by samplers to be used in …
Date: January 21, 2010
Creator: CW, CONNELL; SF, CONLEY; RD, HILDEBRAND; DE, CUNNINGHAM; R_D_Doug_Hildebrand@rl.gov & DeVon_E_Cunningham@rl.gov
System: The UNT Digital Library
Memory-bit selection and recording by rotating fields in vortex-core cross-point architecture (open access)

Memory-bit selection and recording by rotating fields in vortex-core cross-point architecture

In one of our earlier studies [Appl. Phys. Lett. 92, 022509 (2008)], we proposed a concept of robust information storage, recording and readout, which can be implementaed in nonvolatile magnetic random-access memories and is based on the energetically degenerated twofold ground states of vortex-core magnetizations. In the present study, we experimentally demonstrate reliable memory-bit selection and information recording in vortex-core cross-point architecture, specifically using a two-by-two vortex-state disk array. In order to efficiently switch a vortex core positioned at the intersection of crossed electrodes, two orthogonal addressing electrodes are selected, and then two Gaussian pulse currents of optimal pulse width and time delay are applied. Such tailored pulse-type rotating magnetic fields which occurs only at the selected intersection is prerequisite for a reliable memory-bit selection and low-power-consumption recording of information in the existing cross-point architecture.
Date: October 21, 2010
Creator: Yu, Young-Sang; Jung, Hyunsung; Lee, Ki-Suk; Fischer, Peter & Kim, Sang-Koog
System: The UNT Digital Library
AVNG as a Test Case for Cooperative Design (open access)

AVNG as a Test Case for Cooperative Design

Designing a measurement system that might be used in a nuclear facility is a challenging, if not daunting, proposition. The situation is made more complicated when the system needs to be designed to satisfy the disparate requirements of a monitoring and a host party - a relationship that could prove to be adversarial. The cooperative design of the elements of the AVNG (Attribute Verification with Neutrons and Gamma Rays) system served as a crucible that exercised the possible pitfalls in the design and implementation of a measurement system that could be used in a host party nuclear facility that satisfied the constraints of operation for both the host and monitoring parties. Some of the issues that needed to be addressed in the joint design were certification requirements of the host party and the authentication requirements of the monitoring party. In this paper the nature of the problem of cooperative design will be introduced. The details of cooperative design revolve around the idiosyncratic nature of the adversarial relationship between the parties involved in a possible measurement regime, particularly if measurements on items that may contain sensitive information are being pursued. The possibility of an adversarial interaction is more likely if an …
Date: May 21, 2010
Creator: Luke, S J
System: The UNT Digital Library
Self-guided Laser Wakefield Acceleration Beyond 1 GeV using Ionization-induced Injection (open access)

Self-guided Laser Wakefield Acceleration Beyond 1 GeV using Ionization-induced Injection

None
Date: April 21, 2010
Creator: Clayton, C. E.; Ralph, J. E.; Albert, F.; Fonseca, R. A.; Glenzer, S. H.; Joshi, C. et al.
System: The UNT Digital Library
Shack-Hartmann Wavefront Sensing Performance Evaluation for Active Correction of the Large Synoptic Survey Telescope (LSST) (open access)

Shack-Hartmann Wavefront Sensing Performance Evaluation for Active Correction of the Large Synoptic Survey Telescope (LSST)

None
Date: July 21, 2010
Creator: Baker, K L & Seppala, L
System: The UNT Digital Library
Extreme ultraviolet mask substrate surface roughness effects on lithography patterning (open access)

Extreme ultraviolet mask substrate surface roughness effects on lithography patterning

In extreme ultraviolet lithography exposure systems, mask substrate roughness induced scatter contributes to LER at the image plane. In this paper, the impact of mask substrate roughness on image plane speckle is explicitly evaluated. A programmed roughness mask was used to study the correlation between mask roughness metrics and wafer plane aerial image inspection. We find that the roughness measurements by top surface topography profile do not provide complete information on the scatter related speckle that leads to LER at the image plane. We suggest at wavelength characterization by imaging and/or scatter measurements into different frequencies as an alternative for a more comprehensive metrology of the mask substrate/multilayer roughness effects.
Date: June 21, 2010
Creator: George, Simi; Naulleau, Patrick; Salmassi, Farhad; Mochi, Iacopo; Gullikson, Eric; Goldberg, Kenneth et al.
System: The UNT Digital Library
Dynamics of Longitudinal Phase-Space Modulations in an rf Compressor for Electron Beams (open access)

Dynamics of Longitudinal Phase-Space Modulations in an rf Compressor for Electron Beams

Free Electron Lasers (FELs) operating in the UV or x-ray radiation spectrum require peak beam currents that are generally higher than those obtainable by present electron sources, thus making bunch compression necessary. Compression, however, may heighten the effects of collective forces and degrade the beam quality. In this paper they provide a framework for investigating some of these effects in rf compressors by focusing on the longitudinal dynamics of small-amplitude density perturbations, which have the potential to cause the disruptive appearance of the so-called microbunching instability. They develop a linear theory valid for low-to-moderate compression factors under the assumption of a 1D impedance model of longitudinal space charge and provide validation against macroparticle simulations.
Date: May 21, 2010
Creator: Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M. & Vaccarezza, C.
System: The UNT Digital Library
Iterative Self-Dual Reconstruction on Radar Image Recovery (open access)

Iterative Self-Dual Reconstruction on Radar Image Recovery

Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizes when applied to simulated and real SAR images in comparison with standard filters.
Date: May 21, 2010
Creator: Martins, Charles; Medeiros, Fatima; Ushizima, Daniela; Bezerra, Francisco; Marques, Regis & Mascarenhas, Nelson
System: The UNT Digital Library
Bimetallic Lithium Borohydrides Toward Reversible Hydrogen Storage (open access)

Bimetallic Lithium Borohydrides Toward Reversible Hydrogen Storage

Borohydrides such as LiBH{sub 4} have been studied as candidates for hydrogen storage because of their high hydrogen contents (18.4 wt% for LiBH{sub 4}). Limited success has been made in reducing the dehydrogenation temperature by adding reactants such as metals, metal oxides and metal halides. However, full rehydrogenation has not been realized because of multi-step decomposition processes and the stable intermediate species produced. It is suggested that adding second cation in LiBH{sub 4} may reduce the binding energy of B-H. The second cation may also provide the pathway for full rehydrogenation. In this work, several bimetallic borohydrides were synthesized using wet chemistry, high pressure reactive ball milling and sintering processes. The investigation found that the thermodynamic stability was reduced, but the full rehydrogenation is still a challenge. Although our experiments show the partial reversibility of the bimetallic borohydrides, it was not sustainable during dehydriding-rehydriding cycles because of the accumulation of hydrogen inert species.
Date: October 21, 2010
Creator: Au, M.
System: The UNT Digital Library
Simulations of Small-Pore Microchannel Plates for Fast Gated X-ray Imaging and Spectroscopy of High-Energy Density Plasmas (open access)

Simulations of Small-Pore Microchannel Plates for Fast Gated X-ray Imaging and Spectroscopy of High-Energy Density Plasmas

This poster describes work done at National Security Technologies, LLC (NSTec), and Sandia National Laboratories (SNL) over the past several years on the design and characterization of microchannel plate (MCP)-based fast-gated x-ray imagers for use on the SNL Z machine. These cameras use 10-micron-pore MCPs similar to the type used for spectroscopy and imaging applications at other facilities. To aid in the understanding of MCP behavior, we have developed a Monte Carlo simulation model for prediction of MCP response. The code contains a detailed physical model of the electron cascade and amplification process of the MCP that includes energy conservation for the secondary electrons, the effects of elastic scattering of low-energy electrons from the channel wall, and gain saturation mechanisms from wall charging and space charge. Our model can simulate MCP response for both static and pulsed voltage waveforms. Excellent agreement between the Monte Carlo simulations and laboratory measurements has been achieved. Here, we apply our simulation model to 2-micron-pore MCPs, which, while readily available from a variety of vendors, are not used in imaging applications. We investigated the DC and pulsed gain characteristics of such an MCP, with particular emphasis on dynamic range, temporal response, and spatial resolution. The …
Date: June 21, 2010
Creator: Craig A. Kruschwitz, Ming Wu, Greg Rochau
System: The UNT Digital Library
Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques (open access)

Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques

A material subjected to radiation damage will usually experience changes in its physical properties. Measuring these changes in the physical properties provides a basis to study radiation damage in a material which is important for a variety of real world applications from reactor materials to semiconducting devices. When investigating radiation damage, the relative sensitivity of any given property can vary considerably based on the concentration and type of damage present as well as external parameters such as the temperature and starting material composition. By measuring multiple physical properties, these differing sensitivities can be leveraged to provide greater insight into the different aspects of radiation damage accumulation, thereby providing a broader understanding of the mechanisms involved. In this report, self-damage from {alpha}-particle decay in Pu is investigated by measuring two different properties: magnetic susceptibility and resistivity. The results suggest that while the first annealing stage obeys second order chemical kinetics, the primary mechanism is not the recombination of vacancy-interstitial close pairs.
Date: April 21, 2010
Creator: McCall, S K; Fluss, M J & Chung, B W
System: The UNT Digital Library
Influence of molecular ordering on electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers on Au (111) (open access)

Influence of molecular ordering on electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers on Au (111)

The electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers (SAMs) on Au(111) were investigated using atomic force microscopy (AFM) and near edge x-ray absorption fine structure spectroscopy (NEXAFS). The sample surface was uniformly covered with a molecular film consisting of very small grains. Well-ordered and flat monolayer islands were formed after the sample was heated in nitrogen at 120 oC for 1 h. While lattice resolved AFM images revealed a crystalline phase in the islands, the area between islands showed no order. The islands exhibit substantial reduction (50percent) in friction, supporting the existence of good ordering. NEXAFS measurements revealed an average upright molecular orientation in the film, both before and after heating, with a narrower tilt-angle distribution for the heated fim. Conductance-AFM measurements revealed a two orders of magnitude higher conductivity on the ordered islands than on the disordered phase. We propose that the conductance enhancement is a result of a better pi-pi stacking between the trans-stilbene molecular units as a result of improved ordering in islands.
Date: April 21, 2010
Creator: Qi, Yabing; Liu, Xiaosong; Hendriksen, B.L.M.; Navarro, V.; Park, Jeong Y.; Ratera, Imma et al.
System: The UNT Digital Library
Co-simulation of innovative integrated HVAC systems in buildings (open access)

Co-simulation of innovative integrated HVAC systems in buildings

Integrated performance simulation of buildings HVAC systems can help in reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation, as an integrated approach to simulation. This article elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in the here described co-simulation prototype. The prototype is validated with the results obtained from the traditional simulation approach. It is further used in a proof-of-concept case study to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling time step.
Date: June 21, 2010
Creator: Trcka, Marija; Hensena, Jan L.M. & Wetter, Michael
System: The UNT Digital Library
Atmospheric Modeling in Support of a Roadway Accident (open access)

Atmospheric Modeling in Support of a Roadway Accident

The United States Forest Service-Savannah River (USFS) routinely performs prescribed fires at the Savannah River Site (SRS), a Department of Energy (DOE) facility located in southwest South Carolina. This facility covers {approx}800 square kilometers and is mainly wooded except for scattered industrial areas containing facilities used in managing nuclear materials for national defense and waste processing. Prescribed fires of forest undergrowth are necessary to reduce the risk of inadvertent wild fires which have the potential to destroy large areas and threaten nuclear facility operations. This paper discusses meteorological observations and numerical model simulations from a period in early 2002 of an incident involving an early-morning multicar accident caused by poor visibility along a major roadway on the northern border of the SRS. At the time of the accident, it was not clear if the limited visibility was due solely to fog or whether smoke from a prescribed burn conducted the previous day just to the northwest of the crash site had contributed to the visibility. Through use of available meteorological information and detailed modeling, it was determined that the primary reason for the low visibility on this night was fog induced by meteorological conditions.
Date: October 21, 2010
Creator: Buckley, R. & Hunter, C.
System: The UNT Digital Library
Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame (open access)

Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame

Laser driven plasma accelerators promise much shorter particle accelerators but their development requires detailed simulations that challenge or exceed current capabilities. We report the first direct simulations of stages up to 1 TeV from simulations using a Lorentz boosted calculation frame resulting in a million times speedup, thanks to a frame boost as high as gamma = 1300. Effects of the hyperbolic rotation in Minkowski space resulting from the frame boost on the laser propagation in the plasma is shown to be key in the mitigation of a numerical instability that was limiting previous attempts.
Date: September 21, 2010
Creator: Vay, J. L.; Geddes, C. G. R.; Cormier-Michel, E. & Grote, D. P.
System: The UNT Digital Library
A new method to generate dust with astrophysical properties (open access)

A new method to generate dust with astrophysical properties

In interstellar and interplanetary space, the size distribution and composition of dust grains play an important role. For example, dust grains determine optical and ultraviolet extinction levels in astronomical observations, dominate the cooling rate of our Galaxy, and sets the thermal balance and radiative cooling rates in molecular clouds, which are the birth place of stars. Dust grains are also a source of damage and failure to space hardware and thus present a hazard to space flight. To model the size distribution and composition of dust grains, and their effect in the above scenarios, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new experiment which employs a laser to subject dust grains to pressure spikes similar to those of colliding astrophysical dust, and which accelerates the grains to astrophysical velocities. The new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields.
Date: April 21, 2010
Creator: Hansen, J. F.; van Breugel, W.; Bringa, E. M.; Graham, G. A.; Remington, B. A.; Taylor, E. A. et al.
System: The UNT Digital Library
Full Electromagnetic Simulation of Coherent Synchrotron Radiation via the Lorentz-Boosted Frame Approach (open access)

Full Electromagnetic Simulation of Coherent Synchrotron Radiation via the Lorentz-Boosted Frame Approach

Numerical simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. Orders of magnitude speedup has been demonstrated for simulations from first principles of laser-plasma accelerator, free electron laser, and particle beams interacting with electron clouds. Here we address the application of the Lorentz-boosted frame approach to coherent synchrotron radiation (CSR), which can be strongly present in bunch compressor chicanes. CSR is particularly relevant to the next generation of x-ray light sources and is simultaneously difficult to simulate in the lab frame because of the large ratio of scale lengths. It can increase both the incoherent and coherent longitudinal energy spread, effects that often lead to an increase in transverse emittance. We have adapted the WARP code to simulate CSR emission along a simple dipole bend. We present some scaling arguments for the possible computational speed up factor in the boosted frame and initial 3D simulation results.
Date: May 21, 2010
Creator: Fawley, William M & Vay, Jean-Luc
System: The UNT Digital Library
Radioactive Threat Detection with Scattering Physics: A Model-Based Application (open access)

Radioactive Threat Detection with Scattering Physics: A Model-Based Application

The detection of radioactive contraband is a critical problem in maintaining national security for any country. Emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. The development of a model-based sequential Bayesian processor that captures both the underlying transport physics including scattering offers a physics-based approach to attack this challenging problem. It is shown that this processor can be used to develop an effective detection technique.
Date: January 21, 2010
Creator: Candy, J V; Chambers, D H; Breitfeller, E F; Guidry, B L; Verbeke, J M; Axelrod, M A et al.
System: The UNT Digital Library