Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells (open access)

Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.
Date: January 15, 2010
Creator: unknown
System: The UNT Digital Library
Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen (open access)

Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.
Date: July 15, 2010
Creator: unknown
System: The UNT Digital Library
Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production (open access)

Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.
Date: July 15, 2010
Creator: unknown
System: The UNT Digital Library