Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders (open access)

Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.
Date: January 7, 2010
Creator: Johnson, Matthew; Weyant, J.; Garner, S. & Occhionero, M.
Object Type: Article
System: The UNT Digital Library
Mill Seat Landfill Bioreactor Renewable Green Power (NY) (open access)

Mill Seat Landfill Bioreactor Renewable Green Power (NY)

The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.
Date: January 7, 2010
Creator: Barton & Loguidice, P.C.
Object Type: Report
System: The UNT Digital Library
Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage (open access)

Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that …
Date: January 7, 2010
Creator: Fisher, John E.; Gogotsi, Yury & Yildirim, Taner
Object Type: Report
System: The UNT Digital Library
Recent Developments in Neutron Detection and Multiplicity Counting with Liquid Scintillator (open access)

Recent Developments in Neutron Detection and Multiplicity Counting with Liquid Scintillator

For many years at LLNL we have been developing time-correlated neutron detection techniques and algorithms for many applications including Arms Control, Threat Detection and Nuclear Material Assaying. Many of our techniques have been developed specifically for relatively low efficiency (a few %) inherent in the man-portable systems. Historically we used thermal neutron detectors (mainly {sup 3}He) taking advantage of the high thermal neutron interaction cross-sections but more recently we have been investigating fast neutron detection with liquid scintillators and inorganic crystals. We have discovered considerable detection advantages with fast neutron detection as the inherent nano-second production time-scales of fission and neutron induced fission are preserved instead of being lost in neutron thermalization required for thermal neutron detectors. We are now applying fast neutron technology (new fast and portable digital electronics as well as new faster and less hazardous scintillator formulations) to the safeguards regime and faster detector response times and neutron momentum sensitivity show promise in measuring, differentiating and assaying samples that have very high count rates as well as mixed fission sources (e.g. Cm and Pu). We report on measured results with our existing liquid scintillator array and progress on design of nuclear material assaying system that incorporates fast …
Date: January 7, 2010
Creator: Nakae, L F; Kerr, P L; Newby, R J; Prasad, M K; Rowland, M S; Snyderman, N J et al.
Object Type: Article
System: The UNT Digital Library
Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors (open access)

Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.
Date: January 7, 2010
Creator: Beck, P R
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Magnetism in metal-organic capsules (open access)

Magnetism in metal-organic capsules

Nickel and cobalt seamed metal-organic capsules have been isolated and studied using structural, magnetic and computational approaches. Antiferromagnetic exchange in the Ni capsule results from coordination environments enforced by the capsule framework.
Date: January 7, 2010
Creator: Atwood, Jerry L.; Brechin, Euan K; Dalgarno, Scott J.; Inglis, Ross; Jones, Leigh F.; Mossine, Andrew et al.
Object Type: Article
System: The UNT Digital Library