2009 Wind Technologies Market Report (open access)

2009 Wind Technologies Market Report

This report addresses the U.S. wind power industry during the year of 2009.
Date: August 2, 2010
Creator: Wiser, Ryan & Bolinger, Mark
Object Type: Report
System: The UNT Digital Library
2010 CATALYSIS GORDON RESEARCH CONFERENCE, JUNE 27 - JULY 2, 2010, NEW LONDON, NEW HAMPSHIRE (open access)

2010 CATALYSIS GORDON RESEARCH CONFERENCE, JUNE 27 - JULY 2, 2010, NEW LONDON, NEW HAMPSHIRE

Catalysis is a key technology for improving the quality of life while simultaneously reducing the adverse impact of human activities on the environment. The discovery of new catalytic processes and the improvement of existing ones are also critically important for securing the nation's energy supply. The GRC on Catalysis is considered one the most prestigious conference for catalysis research, bringing together leading researchers from both academia, industry and national labs to discuss the latest, most exciting research in catalysis and the future directions for the field. The 2010 GRC on Catalysis will follow time-honored traditions and feature invited talks from the world's leading experts in the fundamentals and applications of catalytic science and technology. We plan to have increased participation from industry. The extended discussions in the company of outstanding thinkers will stimulate and foster new science. The conference will include talks in the following areas: Alternative feedstocks for chemicals and fuels, Imaging and spectroscopy, Design of novel catalysts, Catalyst preparation fundamentals, Molecular insights through theory, Surface Science, Catalyst stability and dynamics. In 2010, the Catalysis conference will move to a larger conference room with a new poster session area that will allow 40 posters per session. The dorm rooms …
Date: July 2, 2010
Creator: Datye, Abhaya
Object Type: Article
System: The UNT Digital Library
2010 POLYMER PHYSICS - JUNE 27 - JULY 2, 2010 (open access)

2010 POLYMER PHYSICS - JUNE 27 - JULY 2, 2010

The 2010 Gordon Research Conference on Polymer Physics will provide outstanding lectures and discussions in this critical field that impacts every industrial sector from electronics to transportation to medicine to textiles to energy generation and storage. Fundamental topics range from mechanical properties of soft gels to new understanding in polymer crystallization to energy conversion and transmission to simulating polymer dynamics at the nanoscale. This international conference will feature 22 invited lectures, wherein the opening 10 minutes are specifically designed for a general polymer physics audience. In addition, poster sessions and informal activities provide ample opportunity to discuss the latest advances in polymer physics. The technical content of the meeting will include new twists on traditional polymer physics topics, recent advances in previously underrepresented topics, and emerging technologies enabled by polymer physics. Here is a partially listing of targeted topics: (1) electrically-active and light-responsive polymers and polymer-based materials used in energy conversion and storage; (2) polymers with hierarchical structures including supramolecular assemblies, ion-containing polymers, and self-assembled block polymers; (3) mechanical and rheological properties of soft materials, such as hydrogels, and of heterogeneous materials, particularly microphase separated polymers and polymer nanocomposites; and (4) crystallization of polymers in dilute solutions, polymer melts, and …
Date: July 2, 2010
Creator: Winey, Karen
Object Type: Article
System: The UNT Digital Library
229Th the Bridge Between Nuclear and Atomic Interactions (open access)

229Th the Bridge Between Nuclear and Atomic Interactions

The precise measurement of time has been a goal of physicists for centuries. With every new increase in our ability to measure time we have discovered new phenomena. The most advanced clocks available to us currently are atomic clocks that use electronic transitions to track the passage of time. In this proposal, I put forward the framework for the first nuclear clock estimated to be 1000 to 10000 times more precise than the current atomic clocks. This research will explore in detail the atomic nuclear interactions and help perfect and refine current atomic-nuclear interaction models. The realization of a {sup 229}Th nuclear clock will allow tests of cosmology by measuring the change of the fine structure constant as a function of time. The results of these experiments could dramatically alter our view of the universe, its past and future evolution. Precision clocks - with fundamental physics applications - require a long-lived quantum transition (two-level system) that is immune to external perturbations. Nuclear transitions would be better suited than atomic transitions for these applications except that nuclear transitions are typically much higher in energy and therefore cannot be accessed with table-top lasers. There is, however, one promising nuclear transition: the doublet …
Date: December 2, 2010
Creator: Burke, J T; Casperson, R J; Swanberg, E L & Thomas, D
Object Type: Report
System: The UNT Digital Library
All Metal Iron Core For A Low Aspect Ratio Tokamak (open access)

All Metal Iron Core For A Low Aspect Ratio Tokamak

A novel concept for incorporating a iron core transformer within a axisymmetric toroidal plasma containment device with a high neutron flux is described. This design enables conceptual design of low aspect ratio devices which employ standard transformer-driven plasma startup by using all-metal high resistance separators between the toroidal field windings. This design avoids the inherent problems of a multiturn air core transformer which will inevitably suffer from strong neutron bombardment and hence lose the integrity of its insulation, both through long term material degradation and short term neutron- induced conductivity.. A full 3-dimensional model of the concept has been developed within the MAXWELL program and the resultant loop voltage calculated. The utility of the result is found to be dependent on the resistivity of the high resistance separators. Useful loop voltage time histories have been obtained using achievable resistivities.
Date: June 2, 2010
Creator: Gates, D. A.; Jun, C.; Zatz, I. & Zolfaghari, A.
Object Type: Report
System: The UNT Digital Library
Allowable Isotopic Mass Limits for the Type 4 Contents in the Model 9977-96 SGQ-EC1 Unshielded Engineered Container (open access)

Allowable Isotopic Mass Limits for the Type 4 Contents in the Model 9977-96 SGQ-EC1 Unshielded Engineered Container

None
Date: September 2, 2010
Creator: Sitaraman, S.; Biswas, D.; Hafner, R. & Anderson, B.
Object Type: Report
System: The UNT Digital Library
Alloy Design and Thermomechanical Processing of a Beta Titanium Alloy for a Heavy Vehicle Application (open access)

Alloy Design and Thermomechanical Processing of a Beta Titanium Alloy for a Heavy Vehicle Application

With the strength of steel, but at half the weight, titanium has the potential to offer significant benefits in the weight reduction of heavy vehicle components while possibly improving performance. However, the cost of conventional titanium fabrication is a major barrier in implementation. New reduction technologies are now available that have the potential to create a paradigm shift in the way the United States uses titanium, and the economics associated with fabrication of titanium components. This CRADA project evaluated the potential to develop a heavy vehicle component from titanium powders. The project included alloy design, development of manufacturing practices, and modeling the economics associated with the new component. New Beta alloys were designed for this project to provide the required mechanical specifications while utilizing the benefits of the new fabrication approach. Manufacturing procedures were developed specific to the heavy vehicle component. Ageing and thermal treatment optimization was performed to provide the desired microstructures. The CRADA partner established fabrication practices and targeted capital investment required for fabricating the component out of titanium. Though initial results were promising, the full project was not executed due to termination of the effort by the CRADA partner and economic trends observed in the heavy vehicle …
Date: July 2, 2010
Creator: Blue, Craig A. & Peter, William H.
Object Type: Report
System: The UNT Digital Library
Analysis of 14C and 13C in Teeth Provides Precise Birth Dating and Clues to Geographical Origin (open access)

Analysis of 14C and 13C in Teeth Provides Precise Birth Dating and Clues to Geographical Origin

None
Date: August 2, 2010
Creator: Alkass, K.; Buchholz, B. A.; Druid, H. & Spalding, K. L.
Object Type: Article
System: The UNT Digital Library
ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING (open access)

ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING

Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. In mechanical sludge removal, personnel add liquid (e.g., inhibited water or supernate salt solution) to the tank to form a slurry. They mix the liquid and sludge with pumps, and transfer the slurry to another tank for further processing. Mechanical sludge removal effectively removes the bulk of the sludge from a tank, but is not able to remove all of the sludge. In Tank 6F, SRR estimated a sludge heel of 5,984 gallons remained after mechanical sludge removal. To remove this sludge heel, SRR performed chemical cleaning. The chemical cleaning included two oxalic acid strikes, a spray wash, and a water wash. SRR conducted the first oxalic acid strike as follows. Personnel added 110,830 gallons of 8 wt % oxalic acid to Tank 6F and mixed the contents of Tank 6F with two submersible mixer pumps (SMPs) for approximately four days. Following the mixing, they transferred 115,903 gallons of Tank 6F material to Tank 7F. The SMPs were operating when the transfer started and were shut down approximately five hours after the transfer started. SRR collected a …
Date: February 2, 2010
Creator: Poirier, M. & Fink, S.
Object Type: Report
System: The UNT Digital Library
Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation (open access)

Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation

This report analyzes the relationship between vehicle weight, size (wheelbase, track width, and their product, footprint), and safety, for individual vehicle makes and models. Vehicle weight and footprint are correlated with a correlation coefficient (R{sup 2}) of about 0.62. The relationship is stronger for cars (0.69) than for light trucks (0.42); light trucks include minivans, fullsize vans, truck-based SUVs, crossover SUVs, and pickup trucks. The correlation between wheelbase and track width, the components of footprint, is about 0.61 for all light vehicles, 0.62 for cars and 0.48 for light trucks. However, the footprint data used in this analysis does not vary for different versions of the same vehicle model, as curb weight does; the analysis could be improved with more precise data on footprint for different versions of the same vehicle model. Although US fatality risk to drivers (driver fatalities per million registered vehicles) decreases as vehicle footprint increases, there is very little correlation either for all light vehicles (0.01), or cars (0.07) or trucks (0.11). The correlation between footprint and fatality risks cars impose on drivers of other vehicles is also very low (0.01); for trucks the correlation is higher (0.30), with risk to others increasing as truck footprint …
Date: March 2, 2010
Creator: Wenzel, Thomas P.
Object Type: Report
System: The UNT Digital Library
Annealing a Follow-up Program: Improvement of the Dark Energy Figure of Merit for Optical Galaxy Cluster Surveys (open access)

Annealing a Follow-up Program: Improvement of the Dark Energy Figure of Merit for Optical Galaxy Cluster Surveys

The precision of cosmological parameters derived from galaxy cluster surveys is limited by uncertainty in relating observable signals to cluster mass. We demonstrate that a small mass-calibration follow-up program can significantly reduce this uncertainty and improve parameter constraints, particularly when the follow-up targets are judiciously chosen. To this end, we apply a simulated annealing algorithm to maximize the dark energy information at fixed observational cost, and find that optimal follow-up strategies can reduce the observational cost required to achieve a specified precision by up to an order of magnitude. Considering clusters selected from optical imaging in the Dark Energy Survey, we find that approximately 200 low-redshift X-ray clusters or massive Sunyaev-Zel'dovich clusters can improve the dark energy figure of merit by 50%, provided that the follow-up mass measurements involve no systematic error. In practice, the actual improvement depends on (1) the uncertainty in the systematic error in follow-up mass measurements, which needs to be controlled at the 5% level to avoid severe degradation of the results; and (2) the scatter in the optical richness-mass distribution, which needs to be made as tight as possible to improve the efficacy of follow-up observations.
Date: June 2, 2010
Creator: Wu, Hao-Yi; Rozo, Eduardo & Wechsler, Risa H.
Object Type: Article
System: The UNT Digital Library
ARPES studies of the electronic structure of LaOFe(P,As) (open access)

ARPES studies of the electronic structure of LaOFe(P,As)

We report a comparison study of LaOFeP and LaOFeAs, two parent compounds of recently discovered iron-pnictide superconductors, using angle-resolved photoemission spectroscopy. Both systems exhibit some common features that are very different from well-studied cuprates. In addition, important differences have also been observed between these two ferrooxypnictides. For LaOFeP, quantitative agreement can be found between our photoemission data and the LDA band structure calculations, suggesting that a weak coupling approach based on an itinerant ground state may be more appropriate for understanding this new superconducting compound. In contrast, the agreement between LDA calculations and experiments in LaOFeAs is relatively poor, as highlighted by the unexpected Fermi surface topology around ({pi},{pi}). Further investigations are required for a comprehensive understanding of the electronic structure of LaOFeAs and related compounds.
Date: June 2, 2010
Creator: Analytis, J.G.
Object Type: Article
System: The UNT Digital Library
Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market (open access)

Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market

Low cost rechargeable flashlights that use LED technology are increasingly available in African markets. While LED technology holds promise to provide affordable, high quality lighting services, the widespread dissemination of low quality products may make it difficult to realize this potential. This study includes performance results for three brands of commonly available LED flashlights that were purchased in Kenya in 2009. The performance of the flashlights was evaluated by testing five units for each of the three brands. The tests included measurements of battery capacity, time required to charge the battery, maximum illuminance at one meter, operation time and lux-hours from a fully charged battery, light distribution, and color rendering. All flashlights tested performed well below the manufacturers? rated specifications; the measured battery capacity was 30-50percent lower than the rated capacity and the time required to fully charge the battery was 6-25percent greater than the rated time requirement. Our analysis further shows that within each brand there is considerable variability in each performance indicator. The five samples within a single brand varied from each other by as much as 22percent for battery capacity measurements, 3.6percent for the number of hours required for a full charge, 23percent for maximum initial lux, …
Date: March 2, 2010
Creator: Tracy, Jennifer; Jacobson, Arne & Mills, Evan
Object Type: Report
System: The UNT Digital Library
Atomic resolution mapping of the excited-state electronic structure of Cu2O with time-resolved x-ray absorption spectroscopy (open access)

Atomic resolution mapping of the excited-state electronic structure of Cu2O with time-resolved x-ray absorption spectroscopy

We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that the conduction-band and valence-band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.
Date: May 2, 2010
Creator: Hillyard, P. W.; Kuchibhatla, S. V. N. T.; Glover, T. E.; Hertlein, M. P.; Huse, Nils; Nachimuthu, P. et al.
Object Type: Article
System: The UNT Digital Library
Beam-energy and laser beam-profile monitor at the BNL LINAC (open access)

Beam-energy and laser beam-profile monitor at the BNL LINAC

We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.
Date: May 2, 2010
Creator: Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M. et al.
Object Type: Article
System: The UNT Digital Library
Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance (open access)

Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance

We review the recent development of bendable x-ray optics used for focusing of beams of soft and hard x-rays at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and at the Linac Coherent Light Source (LCLS) x-ray free electron laser (FEL) at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory. For simultaneous focusing in the tangential and sagittal directions, two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair, are used. Because fabrication of elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is often prohibitive. Moreover, such optics cannot be easily readjusted for use in multiple, different experimental arrangements, e.g. at different focal distances. This is in contrast to flat optics that are simpler to manufacture and easier to measure by conventional interferometry. The tangential figure of a flat substrate is changed by placing torques (couples) at each end. Depending on the applied couples, one can tune the shape close to a desired tangential cylinder, ellipse or parabola. We review the nature of the bending, requirements and approaches to the mechanical design, describe original optical and at-wavelength techniques for optimal tuning of bendable optics and alignment on the beamline, and provide beamline performance of …
Date: June 2, 2010
Creator: Yashchuk, V. V.; Yuan, S.; Baker, S.; Bozek, J.; Celestre, R.; Church, M. et al.
Object Type: Article
System: The UNT Digital Library
Biospecimen Reporting for Improved Study Quality (BRISQ) (open access)

Biospecimen Reporting for Improved Study Quality (BRISQ)

Human biospecimens are subjected to collection, processing, and storage that can significantly alter their molecular composition and consistency. These biospecimen preanalytical factors, in turn, influence experimental outcomes and the ability to reproduce scientific results. Currently, the extent and type of information specific to the biospecimen preanalytical conditions reported in scientific publications and regulatory submissions varies widely. To improve the quality of research that uses human tissues, it is crucial that information on the handling of biospecimens be reported in a thorough, accurate, and standardized manner. The Biospecimen Reporting for Improved Study Quality (BRISQ) recommendations outlined herein are intended to apply to any study in which human biospecimens are used. The purpose of reporting these details is to supply others, from researchers to regulators, with more consistent and standardized information to better evaluate, interpret, compare, and reproduce the experimental results. The BRISQ guidelines are proposed as an important and timely resource tool to strengthen communication and publications on biospecimen-related research and to help reassure patient contributors and the advocacy community that their contributions are valued and respected.
Date: September 2, 2010
Creator: Institute, National Cancer; Jewell, Ph.D., Scott D.; Seijo, M.S., Edward; Kelly, Ph.D., Andrea; Somiari, Ph.D., Stella; B.Chir., M.B. et al.
Object Type: Article
System: The UNT Digital Library
Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission (open access)

Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission

A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated [S. De Santis, J.M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M.T.F. Pivi, and K.G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008).]. We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail.
Date: January 2, 2010
Creator: De Santis, S.; Byrd, J. M.; Billing, M.; Palmer, M.; Sikora, J. & Carlson, B.
Object Type: Article
System: The UNT Digital Library
Chemical Profiling of the Plant Cell Wall through Raman Microspectroscopy (open access)

Chemical Profiling of the Plant Cell Wall through Raman Microspectroscopy

This paper presents a computational framework for chemical pro.ling of the plant cell wall through the Raman spectroscopy. The system enables query of known spectral signatures and clustering of spectral data based on intrinsic properties. As a result, presence and relative concentration of speci.c chemical bonds can be quanti.ed. The primary contribution of this paper is in representation of raman pro.le in terms of .uorescence background and multiscale peak detection at each grid point (voxel). Such a representation allows ef.cient spatial segmentation based on the coupling between high-level salient properties and low-level symbolic representation at each voxel. The high-level salient properties refer to preferred peaks and their attributes for the entire image. The low-level symbolic representations are based on .uorescence background, spectral peak locations, and their attributes. We present results on a corn stover tissue section that is imaged through Raman microscopy, and the results are consistent with the literature. In addition, automatic clustering indicates several distinct layers of the cell walls with different spectral signatures.
Date: March 2, 2010
Creator: Han, Ju; Singh, Seema; Sun, Lan; Simmons, Blake; Auer, Manfred & Parvin, Bahram
Object Type: Article
System: The UNT Digital Library
Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond (open access)

Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond

We demonstrate a technique to nanofabricate nitrogen vacancy (NV) centers in diamond based on broad-beam nitrogen implantation through apertures in electron beam lithography resist. This method enables high-throughput nanofabrication of single NV centers on sub-100-nm length scales. Secondary ion mass spectroscopy measurements facilitate depth profiling of the implanted nitrogen to provide three-dimensional characterization of the NV center spatial distribution. Measurements of NV center coherence with on-chip coplanar waveguides suggest a pathway for incorporating this scalable nanofabrication technique in future quantum applications.
Date: July 2, 2010
Creator: Toyli, David M.; Weis, Christoph D.; Fuchs, D.; Schenkel, Thomas & Awschalom, David D.
Object Type: Article
System: The UNT Digital Library
Comments on large-N volume independence (open access)

Comments on large-N volume independence

We study aspects of the large-N volume independence on R{sup 3} X L{sup {Gamma}}, where L{sup {Gamma}} is a {Gamma}site lattice for Yang-Mills theory with adjoint Wilson-fermions. We find the critical number of lattice sites above which the center-symmetry analysis on L{sup {Gamma}} agrees with the one on the continuum S{sup 1}. For Wilson parameter set to one and {Gamma}{>=}2, the two analyses agree. One-loop radiative corrections to Wilson-line masses are finite, reminiscent of the UV-insensitivity of the Higgs mass in deconstruction/Little-Higgs theories. Even for theories with {Gamma}=1, volume independence in QCD(adj) may be guaranteed to work by tuning one low-energy effective field theory parameter. Within the parameter space of the theory, at most three operators of the 3d effective field theory exhibit one-loop UV-sensitivity. This opens the analytical prospect to study 4d non-perturbative physics by using lower dimensional field theories (d=3, in our example).
Date: June 2, 2010
Creator: Poppitz, Erich; U., /Toronto; Unsal, Mithat & /SLAC /Stanford U., Phys. Dept.
Object Type: Article
System: The UNT Digital Library
Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations (open access)

Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations

Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath theMoon?s surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequencywindow for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHEneutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a samplingfrequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth?s ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, thedetection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit onthe UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.
Date: April 2, 2010
Creator: Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A.G.; Falcke, H.; Singh, K. et al.
Object Type: Article
System: The UNT Digital Library
Controlling X-rays With Light (open access)

Controlling X-rays With Light

Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.
Date: August 2, 2010
Creator: Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot et al.
Object Type: Article
System: The UNT Digital Library
"Defense-in-Depth" Laser Safety and the National Ignition Facility (open access)

"Defense-in-Depth" Laser Safety and the National Ignition Facility

The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is …
Date: December 2, 2010
Creator: King, J. J.
Object Type: Article
System: The UNT Digital Library