All Metal Iron Core For A Low Aspect Ratio Tokamak (open access)

All Metal Iron Core For A Low Aspect Ratio Tokamak

A novel concept for incorporating a iron core transformer within a axisymmetric toroidal plasma containment device with a high neutron flux is described. This design enables conceptual design of low aspect ratio devices which employ standard transformer-driven plasma startup by using all-metal high resistance separators between the toroidal field windings. This design avoids the inherent problems of a multiturn air core transformer which will inevitably suffer from strong neutron bombardment and hence lose the integrity of its insulation, both through long term material degradation and short term neutron- induced conductivity.. A full 3-dimensional model of the concept has been developed within the MAXWELL program and the resultant loop voltage calculated. The utility of the result is found to be dependent on the resistivity of the high resistance separators. Useful loop voltage time histories have been obtained using achievable resistivities.
Date: June 2, 2010
Creator: Gates, D. A.; Jun, C.; Zatz, I. & Zolfaghari, A.
Object Type: Report
System: The UNT Digital Library
Annealing a Follow-up Program: Improvement of the Dark Energy Figure of Merit for Optical Galaxy Cluster Surveys (open access)

Annealing a Follow-up Program: Improvement of the Dark Energy Figure of Merit for Optical Galaxy Cluster Surveys

The precision of cosmological parameters derived from galaxy cluster surveys is limited by uncertainty in relating observable signals to cluster mass. We demonstrate that a small mass-calibration follow-up program can significantly reduce this uncertainty and improve parameter constraints, particularly when the follow-up targets are judiciously chosen. To this end, we apply a simulated annealing algorithm to maximize the dark energy information at fixed observational cost, and find that optimal follow-up strategies can reduce the observational cost required to achieve a specified precision by up to an order of magnitude. Considering clusters selected from optical imaging in the Dark Energy Survey, we find that approximately 200 low-redshift X-ray clusters or massive Sunyaev-Zel'dovich clusters can improve the dark energy figure of merit by 50%, provided that the follow-up mass measurements involve no systematic error. In practice, the actual improvement depends on (1) the uncertainty in the systematic error in follow-up mass measurements, which needs to be controlled at the 5% level to avoid severe degradation of the results; and (2) the scatter in the optical richness-mass distribution, which needs to be made as tight as possible to improve the efficacy of follow-up observations.
Date: June 2, 2010
Creator: Wu, Hao-Yi; Rozo, Eduardo & Wechsler, Risa H.
Object Type: Article
System: The UNT Digital Library
ARPES studies of the electronic structure of LaOFe(P,As) (open access)

ARPES studies of the electronic structure of LaOFe(P,As)

We report a comparison study of LaOFeP and LaOFeAs, two parent compounds of recently discovered iron-pnictide superconductors, using angle-resolved photoemission spectroscopy. Both systems exhibit some common features that are very different from well-studied cuprates. In addition, important differences have also been observed between these two ferrooxypnictides. For LaOFeP, quantitative agreement can be found between our photoemission data and the LDA band structure calculations, suggesting that a weak coupling approach based on an itinerant ground state may be more appropriate for understanding this new superconducting compound. In contrast, the agreement between LDA calculations and experiments in LaOFeAs is relatively poor, as highlighted by the unexpected Fermi surface topology around ({pi},{pi}). Further investigations are required for a comprehensive understanding of the electronic structure of LaOFeAs and related compounds.
Date: June 2, 2010
Creator: Analytis, J.G.
Object Type: Article
System: The UNT Digital Library
Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance (open access)

Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance

We review the recent development of bendable x-ray optics used for focusing of beams of soft and hard x-rays at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and at the Linac Coherent Light Source (LCLS) x-ray free electron laser (FEL) at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory. For simultaneous focusing in the tangential and sagittal directions, two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair, are used. Because fabrication of elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is often prohibitive. Moreover, such optics cannot be easily readjusted for use in multiple, different experimental arrangements, e.g. at different focal distances. This is in contrast to flat optics that are simpler to manufacture and easier to measure by conventional interferometry. The tangential figure of a flat substrate is changed by placing torques (couples) at each end. Depending on the applied couples, one can tune the shape close to a desired tangential cylinder, ellipse or parabola. We review the nature of the bending, requirements and approaches to the mechanical design, describe original optical and at-wavelength techniques for optimal tuning of bendable optics and alignment on the beamline, and provide beamline performance of …
Date: June 2, 2010
Creator: Yashchuk, V. V.; Yuan, S.; Baker, S.; Bozek, J.; Celestre, R.; Church, M. et al.
Object Type: Article
System: The UNT Digital Library
Comments on large-N volume independence (open access)

Comments on large-N volume independence

We study aspects of the large-N volume independence on R{sup 3} X L{sup {Gamma}}, where L{sup {Gamma}} is a {Gamma}site lattice for Yang-Mills theory with adjoint Wilson-fermions. We find the critical number of lattice sites above which the center-symmetry analysis on L{sup {Gamma}} agrees with the one on the continuum S{sup 1}. For Wilson parameter set to one and {Gamma}{>=}2, the two analyses agree. One-loop radiative corrections to Wilson-line masses are finite, reminiscent of the UV-insensitivity of the Higgs mass in deconstruction/Little-Higgs theories. Even for theories with {Gamma}=1, volume independence in QCD(adj) may be guaranteed to work by tuning one low-energy effective field theory parameter. Within the parameter space of the theory, at most three operators of the 3d effective field theory exhibit one-loop UV-sensitivity. This opens the analytical prospect to study 4d non-perturbative physics by using lower dimensional field theories (d=3, in our example).
Date: June 2, 2010
Creator: Poppitz, Erich; U., /Toronto; Unsal, Mithat & /SLAC /Stanford U., Phys. Dept.
Object Type: Article
System: The UNT Digital Library
Dependence of Band Renormalization Effect on the Number of Copper-oxide Layers in Tl-based Copper-oxide Superconductor using Angle-resolved Photoemission Spectroscopy (open access)

Dependence of Band Renormalization Effect on the Number of Copper-oxide Layers in Tl-based Copper-oxide Superconductor using Angle-resolved Photoemission Spectroscopy

Here we report the first angle-resolved photoemission measurement on nearly optimally doped multilayer Tl-based superconducting cuprates (Tl-2212 and Tl-1223) and a comparison study to single-layer (Tl-2201) compound. A kink in the band dispersion is found in all three compounds but exhibits different momentum dependence for the single-layer and multilayer compounds, reminiscent to that of Bi-based cuprates. This layer number dependent renormalization effect strongly implies that the spin-resonance mode is unlikely to be responsible for the dramatic renormalization effect near the antinodal region.
Date: June 2, 2010
Creator: Lee, Wei-Sheng
Object Type: Article
System: The UNT Digital Library
A Design Report of the Baseline for PEP-X: an Ultra-Low Emittance Storage Ring (open access)

A Design Report of the Baseline for PEP-X: an Ultra-Low Emittance Storage Ring

Over the past year, we have worked out a baseline design for PEP-X, as an ultra-low emittance storage ring that could reside in the existing 2.2-km PEPII tunnel. The design features a hybrid lattice with double bend achromat (DBA) cells in two arcs and theoretical minimum emittance (TME) cells in the remaining four arcs. Damping wigglers are used to reduce the horizontal emittance to 86 pm-rad at zero current for a 4.5 GeV electron beam. At a design current of 1.5 A, the horizontal emittance increases, due to intrabeam scattering, to 164 pm-rad when the vertical emittance is maintained at a diffraction limited 8 pm-rad. The baseline design will produce photon beams achieving a brightness of 10{sup 22} (ph/s/mm{sup 2}/mrad{sup 2}/0.1% BW) at 10 keV in a 3.5-m conventional planar undulator. Our study shows that an optimized lattice has adequate dynamic aperture, while accommodating a conventional off-axis injection system. In this report, we present the results of study, including the lattice properties, nonlinear dynamics, intra-beam scattering and Touschek lifetime, RF system, and collective instabilities. Finally, we discuss the possibility of partial lasing at soft X-ray wavelengths using a long undulator in a straight section.
Date: June 2, 2010
Creator: Bane, Karl; Bertsche, Kirk; Cai, Yunhai; Chao, Alex; Corbett, Willian; Fox, John et al.
Object Type: Report
System: The UNT Digital Library
Deuterium Retention in NSTX with Lithium Conditioning (open access)

Deuterium Retention in NSTX with Lithium Conditioning

High (≈ 90%) deuterium retention was observed in NSTX gas balance measurements both withand without lithiumization of the carbon plasma facing components. The gas retained in ohmic discharges was measured by comparing the vessel pressure rise after a discharge to that of a gasonly pulse with the pumping valves closed. For neutral beam heated discharges the gas input and gas pumped by the NB cryopanels were tracked. The discharges were followed by outgassing of deuterium that reduced the retention. The relationship between retention and surface chemistry was explored with a new plasma-material interface probe connected to an in-vacuo surface science station that exposed four material samples to the plasma. XPS and TDS analysis showed that the binding of D atoms is fundamentally changed by lithium - in particular atoms are weakly bonded in regions near lithium atoms bound to either oxygen or the carbon matrix.
Date: June 2, 2010
Creator: C.H. Skinner, J.P. Allain, W. Blanchard, H.W. Kugel, R. Maingi, L. Roquemore, V. Soukhanovskii, C.N. Taylor
Object Type: Article
System: The UNT Digital Library
Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductor (open access)

Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductor

A recent highlight in the study of high-Tc superconductors is the observation of band renormalization or self-energy effects on the quasiparticles. This is seen in the form of kinks in the quasiparticle dispersions as measured by photoemission and interpreted as signatures of collective bosonic modes coupling to the electrons. Here we compare for the first time the self-energies in an optimally doped and strongly overdoped, nonsuperconducting single-layer Bi-cuprate (Bi{sub 2}Sr{sub 2}CuO{sub 6}). In addition to the appearance of a strong overall weakening, we also find that the weight of the self-energy in the overdoped system shifts to higher energies. We present evidence that this is related to a change in the coupling to c-axis phonons due to the rapid change of the c-axis screening in this doping range.
Date: June 2, 2010
Creator: Meevasana, W.
Object Type: Article
System: The UNT Digital Library
Fingerprinting Communication and Computation on HPC Machines (open access)

Fingerprinting Communication and Computation on HPC Machines

How do we identify what is actually running on high-performance computing systems? Names of binaries, dynamic libraries loaded, or other elements in a submission to a batch queue can give clues, but binary names can be changed, and libraries provide limited insight and resolution on the code being run. In this paper, we present a method for"fingerprinting" code running on HPC machines using elements of communication and computation. We then discuss how that fingerprint can be used to determine if the code is consistent with certain other types of codes, what a user usually runs, or what the user requested an allocation to do. In some cases, our techniques enable us to fingerprint HPC codes using runtime MPI data with a high degree of accuracy.
Date: June 2, 2010
Creator: Peisert, Sean
Object Type: Report
System: The UNT Digital Library
FINITE ELEMENT ANALYSIS OF BULK TRITIUM SHIPPING PACKAGE (open access)

FINITE ELEMENT ANALYSIS OF BULK TRITIUM SHIPPING PACKAGE

The Bulk Tritium Shipping Package was designed by Savannah River National Laboratory. This package will be used to transport tritium. As part of the requirements for certification, the package must be shown to meet the scenarios of the Hypothetical Accident Conditions (HAC) defined in Code of Federal Regulations Title 10 Part 71 (10CFR71). The conditions include a sequential 30-foot drop event, 30-foot dynamic crush event, and a 40-inch puncture event. Finite Element analyses were performed to support and expand upon prototype testing. Cases similar to the tests were evaluated. Additional temperatures and orientations were also examined to determine their impact on the results. The peak stress on the package was shown to be acceptable. In addition, the strain on the outer drum as well as the inner containment boundary was shown to be acceptable. In conjunction with the prototype tests, the package was shown to meet its confinement requirements.
Date: June 2, 2010
Creator: Jordan, J.
Object Type: Article
System: The UNT Digital Library
Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging (open access)

Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging

Local electrical imaging using microwave impedance microscope is performed on graphene in different modalities, yielding a rich hierarchy of the local conductivity. The low-conductivity graphite oxide and its derivatives show significant electronic inhomogeneity. For the conductive chemical graphene, the residual defects lead to a systematic reduction of the microwave signals. In contrast, the signals on pristine graphene agree well with a lumped-element circuit model. The local impedance information can also be used to verify the electrical contact between overlapped graphene pieces.
Date: June 2, 2010
Creator: Kundhikanjana, W.
Object Type: Article
System: The UNT Digital Library
High Resolution Angle Resolved Photoemission Studies on Quasi-Particle Dynamics in Graphite (open access)

High Resolution Angle Resolved Photoemission Studies on Quasi-Particle Dynamics in Graphite

We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.
Date: June 2, 2010
Creator: Leem, C.S.
Object Type: Article
System: The UNT Digital Library
IDENTIFICATION OF APPROPRIATE QUALIFICATION TESTING AND END-OF-LIFE WASTE STORAGE CONSIDERATIONS FOR DEEP BED SAND FILTERS (open access)

IDENTIFICATION OF APPROPRIATE QUALIFICATION TESTING AND END-OF-LIFE WASTE STORAGE CONSIDERATIONS FOR DEEP BED SAND FILTERS

Deep bed sand (DBS) filters have filtered radioactive particulates at two United States Department of Energy (DOE) sites since 1948. Some early DBS filters experienced issues with chemical attack on support tiles, requiring significant repairs. Designs of DBS filters constructed since 1970 paid greater attention to chemical compatibility, resulting in decades of reliable performance since 1975.
Date: June 2, 2010
Creator: Matthews, K.
Object Type: Article
System: The UNT Digital Library
Identification of the Charge Carriers in Cerium Phosphate Ceramics (open access)

Identification of the Charge Carriers in Cerium Phosphate Ceramics

The total conductivity of Sr-doped cerium orthophosphate changes by nearly two orders of magnitude depending on the oxygen and hydrogen content of the atmosphere. The defect model for the system suggests that this is because the identity of the dominant charge carrier can change from electron holes to protons when the sample is in equilibrium with air vs. humidified hydrogen. In this work are presented some preliminary measurements that can help to clarify this exchange between carriers. The conduction behavior of a 2percent Sr-doped CePO4 sample under symmetric atmospheric conditions is investigated using several techniques, including AC impedance, H/D isotope effects, and chronoamperometry.
Date: June 2, 2010
Creator: Ray, Hannah L. & Jonghe, Lutgard C. De
Object Type: Article
System: The UNT Digital Library
Misaligned Disks as Obscurers in Active Galaxies (open access)

Misaligned Disks as Obscurers in Active Galaxies

We review critically the evidence concerning the fraction of Active Galactic Nuclei (AGN) which appear as Type 2 AGN, carefully distinguishing strict Type 2 AGN from both more lightly reddened Type 1 AGN, and from low excitation narrow line AGN, which may represent a different mode of activity. Low excitation AGN occur predominantly at low luminosities; after removing these, true Type 2 AGN represent 58{-+}5% of all AGN, and lightly reddened Type 1 AGN a further {approx}15%. Radio, IR, and volume-limited samples all agree in showing no change of Type 2 fraction with luminosity. X-ray samples do show a change with luminosity; we discuss possible reasons for this discrepancy. We test a very simple picture which produces this Type 2 fraction with minimal assumptions. In this picture, infall from large scales occurs in random directions, but must eventually align with the inner accretion flow, producing a severely warped disk on parsec scales. If the re-alignment is dominated by tilt, with minimal twist, a wide range of covering factors is predicted in individual objects, but with an expected mean fraction of Type 2 AGN of exactly 50%. This 'tilted disc' picture predicts reasonable alignment of observed nuclear structures on average, but …
Date: June 2, 2010
Creator: Lawrence, A.; Elvis, M. & /Edinburgh U., Inst. Astron. /Harvard-Smithsonian Ctr. Astrophys.
Object Type: Article
System: The UNT Digital Library
Multiple Bosonic Mode Coupling in Electron Self-Energy of (La_2-xSr_x)CuO_4 (open access)

Multiple Bosonic Mode Coupling in Electron Self-Energy of (La_2-xSr_x)CuO_4

High resolution angle-resolved photoemission spectroscopy data with significantly improved statistics reveal tne structure in the electron self-energy of the underdoped (La{sub 2-x}Sr{sub x}) CuO{sub 4} (x=0.03, 0.036 and 0.07) samples in the normal state. Four fine structure have been identified near 27, 45, 61 and 75 meV. These features show good correspondence to the structure in the phonon density of states as measured from neutron scattering.
Date: June 2, 2010
Creator: Zhou, X.J.
Object Type: Article
System: The UNT Digital Library
Nanoscale Electronic Inhomogeneity in In_2Se_3 Nanoribbons Revealed by Microwave Impedance Microscopy (open access)

Nanoscale Electronic Inhomogeneity in In_2Se_3 Nanoribbons Revealed by Microwave Impedance Microscopy

Driven by interactions due to the charge, spin, orbital, and lattice degrees of freedom, nanoscale inhomogeneity has emerged as a new theme for materials with novel properties near multiphase boundaries. As vividly demonstrated in complex metal oxides and chalcogenides, these microscopic phases are of great scientific and technological importance for research in hightemperature superconductors, colossal magnetoresistance effect, phase-change memories, and domain switching operations. Direct imaging on dielectric properties of these local phases,however, presents a big challenge for existing scanning probe techniques. Here, we report the observation of electronic inhomogeneity in indium selenide (In{sub 2}Se{sub 3}) nanoribbons by near-field scanning microwave impedance microscopy. Multiple phases with local resistivity spanning six orders of magnitude are identified as the coexistence of superlattice, simple hexagonal lattice and amorphous structures with {approx}100nm inhomogeneous length scale, consistent with high-resolution transmission electron microscope studies. The atomic-force-microscope-compatible microwave probe is able to perform quantitative sub-surface electronic study in a noninvasive manner. Finally, the phase change memory function in In{sub 2}Se{sub 3} nanoribbon devices can be locally recorded with big signal of opposite signs.
Date: June 2, 2010
Creator: Lai, K.J.
Object Type: Article
System: The UNT Digital Library
A neutron scattering study of the interplay between structure and magnetism in Ba(Fe1&#8722xCox)2As2 (open access)

A neutron scattering study of the interplay between structure and magnetism in Ba(Fe1&#8722xCox)2As2

Single crystal neutron diffraction is used to investigate the magnetic and structural phase diagram of the electron doped superconductor Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2}. Heat capacity and resistivity measurements have demonstrated that Co doping this system splits the combined antiferromagnetic and structural transition present in BaFe{sub 2}As{sub 2} into two distinct transitions. For x=0.025, we find that the upper transition is between the high-temperature tetragonal and low-temperature orthorhombic structures with (T{sub TO} = 99 {+-} 0.5 K) and the antiferromagnetic transition occurs at T{sub AF} = 93 {+-} 0.5 K. We find that doping rapidly suppresses the antiferromagnetism, with antiferromagnetic order disappearing at x {approx} 0.055. However, there is a region of co-existence of antiferromagnetism and superconductivity. The effect of the antiferromagnetic transition can be seen in the temperature dependence of the structural Bragg peaks from both neutron scattering and x-ray diffraction. We infer from this that there is strong coupling between the antiferromagnetism and the crystal lattice.
Date: June 2, 2010
Creator: Lester, C.
Object Type: Article
System: The UNT Digital Library
Next-to-Leading Order QCD Predictions for Z, gamma^* 3-Jet Distributions at the Tevatron (open access)

Next-to-Leading Order QCD Predictions for Z, gamma^* 3-Jet Distributions at the Tevatron

Using BlackHat in conjunction with SHERPA, we have computed next-to-leading order QCD predictions for a variety of distributions in Z, {gamma}{sup {asterisk}}+ 1, 2, 3-jet production at the Tevatron, where the Z boson or off-shell photon decays into an electron-positron pair. We find good agreement between the NLO results for jet {sub pT} distributions and measurements by CDF and D0. We also present jetproduction ratios, or probabilities of finding one additional jet. As a function of vector-boson {sub pT} , the ratios have distinctive features which we describe in terms of a simple model capturing leading logarithms and phase-space and parton-distribution-function suppression.
Date: June 2, 2010
Creator: Berger, C.F.; /MIT, LNS; Bern, Z.; /UCLA; Dixon, L.J.; /SLAC et al.
Object Type: Article
System: The UNT Digital Library
Nodal Quasiparticle in Pseudogapped Colossal Magnetoresistive Manganites (open access)

Nodal Quasiparticle in Pseudogapped Colossal Magnetoresistive Manganites

A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}. Our findings therefore cast doubt on the assumption that the pseudogap state …
Date: June 2, 2010
Creator: Mannella, N.
Object Type: Article
System: The UNT Digital Library
Nucleon-nucleon scattering in a harmonic potential (open access)

Nucleon-nucleon scattering in a harmonic potential

None
Date: June 2, 2010
Creator: Luu, T; Savage, M; Schwenk, A & Vary, J P
Object Type: Article
System: The UNT Digital Library
Observation of the Upsilon(13DJ ) Bottomonium State through Decays to pi+pi-Upsilon(1S) (open access)

Observation of the Upsilon(13DJ ) Bottomonium State through Decays to pi+pi-Upsilon(1S)

Based on 122X10{sup 6} {upsilon}(3S) events collected with the BABAR detector, we have observed the {upsilon}(1{sup 3}D{sub J}) bottomonium state through the {upsilon}(3S){yields}{gamma}{gamma}{upsilon}(1{sup 3}D{sub J}){yields}{gamma}{gamma}{pi}{sub +}{pi}{sub -}{upsilon}(1S) decay chain. The significance is 6.2 standard deviations including systematic uncertainties. The mass of the J = 2 member of the {upsilon}(1{sup 3}D{sub J}) triplet is determined to be 10164.5{-+}0.8 (stat.) {-+} 0.5 (syst.) MeV/c{sup 2}. We use the {pi}{sup +}{pi}{sup -} invariant mass and decay angular distributions to confirm the consistency of the observed state with the orbital angular momentum and parity assignments of the {upsilon}(1{sup 3}D{sub J}).
Date: June 2, 2010
Creator: del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J. et al.
Object Type: Article
System: The UNT Digital Library
Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid (open access)

Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

We present an Open Automated Demand Response Communications Specifications (OpenADR) data model capable of communicating real-time prices to electricity customers. We also show how the same data model could be used to for other types of dynamic pricing tariffs (including peak pricing tariffs, which are common throughout the United States). Customers participating in automated demand response programs with building control systems can respond to dynamic prices by using the actual prices as inputs to their control systems. Alternatively, prices can be mapped into"building operation modes," which can act as inputs to control systems. We present several different strategies customers could use to map prices to operation modes. Our results show that OpenADR can be used to communicate dynamic pricing within the Smart Grid and that OpenADR allows for interoperability with existing and future systems, technologies, and electricity markets.
Date: June 2, 2010
Creator: Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann & Kiliccote, Sila
Object Type: Article
System: The UNT Digital Library