Active infrared materials for beam steering. (open access)

Active infrared materials for beam steering.

The mid-infrared (mid-IR, 3 {micro}m -12 {micro}m) is a highly desirable spectral range for imaging and environmental sensing. We propose to develop a new class of mid-IR devices, based on plasmonic and metamaterial concepts, that are dynamically controlled by tunable semiconductor plasma resonances. It is well known that any material resonance (phonons, excitons, electron plasma) impacts dielectric properties; our primary challenge is to implement the tuning of a semiconductor plasma resonance with a voltage bias. We have demonstrated passive tuning of both plasmonic and metamaterial structures in the mid-IR using semiconductors plasmas. In the mid-IR, semiconductor carrier densities on the order of 5E17cm{sup -3} to 2E18cm{sup -3} are desirable for tuning effects. Gate control of carrier densities at the high end of this range is at or near the limit of what has been demonstrated in literature for transistor style devices. Combined with the fact that we are exploiting the optical properties of the device layers, rather than electrical, we are entering into interesting territory that has not been significantly explored to date.
Date: October 1, 2010
Creator: Brener, Igal; Reno, John Louis; Passmore, Brandon Scott; Gin, Aaron V.; Shaner, Eric Arthur; Miao, Xiaoyu et al.
Object Type: Report
System: The UNT Digital Library
Adagio 4.16 user<U+2019>s guide. (open access)

Adagio 4.16 user<U+2019>s guide.

Adagio is a three-dimensional, implicit solid mechanics code with a versatile element library, nonlinear material models, and capabilities for modeling large deformation and contact. Adagio is a parallel code, and its nonlinear solver and contact capabilities enable scalable solutions of large problems. It is built on the SIERRA Framework [1, 2]. SIERRA provides a data management framework in a parallel computing environment that allows the addition of capabilities in a modular fashion. The Adagio 4.16 User's Guide provides information about the functionality in Adagio and the command structure required to access this functionality in a user input file. This document is divided into chapters based primarily on functionality. For example, the command structure related to the use of various element types is grouped in one chapter; descriptions of material models are grouped in another chapter. The input and usage of Adagio is similar to that of the code Presto [3]. Presto, like Adagio, is a solid mechanics code built on the SIERRA Framework. The primary difference between the two codes is that Presto uses explicit time integration for transient dynamics analysis, whereas Adagio is an implicit code. Because of the similarities in input and usage between Adagio and Presto, the …
Date: May 1, 2010
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Adagio 4.18 user's guide. (open access)

Adagio 4.18 user's guide.

Adagio is a Lagrangian, three-dimensional, implicit code for the analysis of solids and structures. It uses a multi-level iterative solver, which enables it to solve problems with large deformations, nonlinear material behavior, and contact. It also has a versatile library of continuum and structural elements, and an extensive library of material models. Adagio is written for parallel computing environments, and its solvers allow for scalable solutions of very large problems. Adagio uses the SIERRA Framework, which allows for coupling with other SIERRA mechanics codes. This document describes the functionality and input structure for Adagio.
Date: September 1, 2010
Creator: Spencer, Benjamin Whiting
Object Type: Report
System: The UNT Digital Library
Adapting ORAP to wind plants : industry value and functional requirements. (open access)

Adapting ORAP to wind plants : industry value and functional requirements.

Strategic Power Systems (SPS) was contracted by Sandia National Laboratories to assess the feasibility of adapting their ORAP (Operational Reliability Analysis Program) tool for deployment to the wind industry. ORAP for Wind is proposed for use as the primary data source for the CREW (Continuous Reliability Enhancement for Wind) database which will be maintained by Sandia to enable reliability analysis of US wind fleet operations. The report primarily addresses the functional requirements of the wind-based system. The SPS ORAP reliability monitoring system has been used successfully for over twenty years to collect RAM (Reliability, Availability, Maintainability) and operations data for benchmarking and analysis of gas and steam turbine performance. This report documents the requirements to adapt the ORAP system for the wind industry. It specifies which existing ORAP design features should be retained, as well as key new requirements for wind. The latter includes alignment with existing and emerging wind industry standards (IEEE 762, ISO 3977 and IEC 61400). There is also a comprehensive list of thirty critical-to-quality (CTQ) functional requirements which must be considered and addressed to establish the optimum design for wind.
Date: August 1, 2010
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Addressing the Federal-State-Local Interface Issues During a Catastrophic Event Such as an Anthrax Attack (open access)

Addressing the Federal-State-Local Interface Issues During a Catastrophic Event Such as an Anthrax Attack

On October 9, 2008, federal, state and local policy makers, emergency managers, and medical and public health officials convened in Seattle, Washington, for a workshop on Addressing the Federal-State-Local Interface Issues During a Catastrophic Event Such as an Anthrax Attack. The day-long symposium was aimed at generating a dialogue about recovery and restoration through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems. The Principal Federal Official (PFO) provided an overview of the role of the PFO in a catastrophic event. A high-level summary of an anthrax scenario was presented. The remainder of the day was focused on interactive discussions among federal, state and local emergency management experts in the areas of: • Decision-making, prioritization, and command and control • Public health/medical services • Community resiliency and continuity of government. Key topics and issues that resulted from discussions included: • Local representation in the Joint Field Office (JFO) • JFO transition to the Long-Term Recovery Office • Process for prioritization of needs • Process for regional coordination • Prioritization - process and federal/military intervention • Allocation of limited resources • Re-entry decision and consistency • Importance of maintaining a healthy hospital system • …
Date: February 1, 2010
Creator: Stein, Steven L.; Lesperance, Ann M. & Upton, Jaki F.
Object Type: Report
System: The UNT Digital Library
Advanced analysis methods in particle physics (open access)

Advanced analysis methods in particle physics

Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.
Date: October 1, 2010
Creator: Bhat, Pushpalatha C.
Object Type: Article
System: The UNT Digital Library
Advanced atom chips with two metal layers. (open access)

Advanced atom chips with two metal layers.

A design concept, device layout, and monolithic microfabrication processing sequence have been developed for a dual-metal layer atom chip for next-generation positional control of ultracold ensembles of trapped atoms. Atom chips are intriguing systems for precision metrology and quantum information that use ultracold atoms on microfabricated chips. Using magnetic fields generated by current carrying wires, atoms are confined via the Zeeman effect and controllably positioned near optical resonators. Current state-of-the-art atom chips are single-layer or hybrid-integrated multilayer devices with limited flexibility and repeatability. An attractive feature of multi-level metallization is the ability to construct more complicated conductor patterns and thereby realize the complex magnetic potentials necessary for the more precise spatial and temporal control of atoms that is required. Here, we have designed a true, monolithically integrated, planarized, multi-metal-layer atom chip for demonstrating crossed-wire conductor patterns that trap and controllably transport atoms across the chip surface to targets of interest.
Date: December 1, 2010
Creator: Stevens, James E.; Blain, Matthew Glenn; Benito, Francisco M. & Biedermann, Grant
Object Type: Report
System: The UNT Digital Library
Advanced Benchmarking for Complex Building Types:  Laboratories as an Exemplar (open access)

Advanced Benchmarking for Complex Building Types: Laboratories as an Exemplar

Complex buildings such as laboratories, data centers and cleanrooms present particular challenges for energy benchmarking because it is difficult to normalize special requirements such as health and safety in laboratories and reliability (i.e., system redundancy to maintain uptime) in data centers which significantly impact energy use. For example, air change requirements vary widely based on the type of work being performed in each laboratory space. We present methods and tools for energy benchmarking in laboratories, as an exemplar of a complex building type. First, we address whole building energy metrics and normalization parameters. We present empirical methods based on simple data filtering as well as multivariate regression analysis on the Labs21 database. The regression analysis showed lab type, lab-area ratio and occupancy hours to be significant variables. Yet the dataset did not allow analysis of factors such as plug loads and air change rates, both of which are critical to lab energy use. The simulation-based method uses an EnergyPlus model to generate a benchmark energy intensity normalized for a wider range of parameters. We suggest that both these methods have complementary strengths and limitations. Second, we present&quot;action-oriented&quot; benchmarking, which extends whole-building benchmarking by utilizing system-level features and metrics such as …
Date: August 1, 2010
Creator: Mathew, Paul A.; Clear, Robert; Kircher, Kevin; Webster, Tom; Lee, Kwang Ho & Hoyt, Tyler
Object Type: Article
System: The UNT Digital Library
Advanced Cell Development and Degradation Studies (open access)

Advanced Cell Development and Degradation Studies

The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.
Date: September 1, 2010
Creator: O'Brien, J. E.; Stoots, C. M.; Herring, J. S.; O'Brien, R. C.; Condie, K. G.; Sohal, M. et al.
Object Type: Report
System: The UNT Digital Library
Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation (open access)

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation

When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.
Date: December 1, 2010
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Advanced Engineering Environment FY09/10 pilot project. (open access)

Advanced Engineering Environment FY09/10 pilot project.

The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporate product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.
Date: June 1, 2010
Creator: Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.; Dutra, Edward G. & Sego, Abraham L.
Object Type: Report
System: The UNT Digital Library
Advanced Fuels Campaign Execution Plan (open access)

Advanced Fuels Campaign Execution Plan

The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the “Grand Challenge” for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.
Date: October 1, 2010
Creator: Pasamehmetoglu, Kemal
Object Type: Report
System: The UNT Digital Library
Advanced Fuels Campaign FY 2010 Accomplishments Report (open access)

Advanced Fuels Campaign FY 2010 Accomplishments Report

The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.
Date: December 1, 2010
Creator: Braase, Lori
Object Type: Report
System: The UNT Digital Library
Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability; The Spectrum of Clean Energy Innovation (Fact Sheet) (open access)

Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability; The Spectrum of Clean Energy Innovation (Fact Sheet)

Fact sheet describes NREL's work with heat transfer technologies to keep hybrid electric and all-electric vehicle power electronic components cool.
Date: June 1, 2010
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Advanced I/O for large-scale scientific applications. (open access)

Advanced I/O for large-scale scientific applications.

As scientific simulations scale to use petascale machines and beyond, the data volumes generated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO routines becomes more and more important to keep the time spent in IO acceptable. It is not uncommon, for instance, to have 20% of an application's runtime spent performing IO in a 'tuned' system. Careful management of the IO routines can move that to 5% or even less in some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that trying to discover the scientifically valid contributions requires assistance at runtime to both organize and annotate the data. Waiting for offline processing is not feasible due both to the impact on the IO system and the time required. To reduce this load and improve the ability of scientists to use the large amounts of data being produced, new techniques for data management are required. First, there is a need for techniques for efficient movement of data from the compute space to storage. These techniques should understand the underlying system infrastructure and adapt to changing system conditions. Technologies include aggregation networks, data staging nodes for …
Date: January 1, 2010
Creator: Klasky, Scott (Oak Ridge National Laboratory, Oak Ridge, TN); Schwan, Karsten (Georgia Institute of Technology, Atlanta, GA); Oldfield, Ron A. & Lofstead, Gerald F., II (Georgia Institute of Technology, Atlanta, GA)
Object Type: Report
System: The UNT Digital Library
Advanced Nuclear Fuel Cycle Options (open access)

Advanced Nuclear Fuel Cycle Options

A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.
Date: June 1, 2010
Creator: Wigeland, Roald; Taiwo, Temitope; Todosow, Michael; Halsey, William & Gehin, Jess
Object Type: Article
System: The UNT Digital Library
ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION (open access)

ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.
Date: September 1, 2010
Creator: O'Brien, R. C.; Howe, S. D. & Werner, J. E.
Object Type: Article
System: The UNT Digital Library
Advanced Reflector and Absorber Materials (Fact Sheet) (open access)

Advanced Reflector and Absorber Materials (Fact Sheet)

Fact sheet describing NREL CSP Program capabilities in the area of advanced reflector and absorber materials: evaluating performance, determining degradation rates and lifetime, and developing new coatings.
Date: August 1, 2010
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Advanced Simulation and Optimization Tools for Dynamic Aperture of Non-scaling FFAGs and Accelerators including Modern User Interfaces (open access)

Advanced Simulation and Optimization Tools for Dynamic Aperture of Non-scaling FFAGs and Accelerators including Modern User Interfaces

With the U.S. experimental effort in HEP largely located at laboratories supporting the operations of large, highly specialized accelerators, colliding beam facilities, and detector facilities, the understanding and prediction of high energy particle accelerators becomes critical to the success, overall, of the DOE HEP program. One area in which small businesses can contribute to the ongoing success of the U.S. program in HEP is through innovations in computer techniques and sophistication in the modeling of high-energy accelerators. Accelerator modeling at these facilities is performed by experts with the product generally highly specific and representative only of in-house accelerators or special-interest accelerator problems. Development of new types of accelerators like FFAGs with their wide choices of parameter modifications, complicated fields, and the simultaneous need to efficiently handle very large emittance beams requires the availability of new simulation environments to assure predictability in operation. In this, ease of use and interfaces are critical to realizing a successful model, or optimization of a new design or working parameters of machines. In Phase I, various core modules for the design and analysis of FFAGs were developed and Graphical User Interfaces (GUI) have been investigated instead of the more general yet less easily manageable console-type …
Date: September 1, 2010
Creator: Mills, F.; Makino, K.; Berz, M. & Johnstone, C.
Object Type: Report
System: The UNT Digital Library
Advanced Sodium Fast Reactor Accident Source Terms : Research Needs (open access)

Advanced Sodium Fast Reactor Accident Source Terms : Research Needs

An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic event<U+F0B7>Energetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolant<U+F0B7>Entrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached cladding<U+F0B7>Rates of radionuclide leaching from fuel by liquid sodium<U+F0B7>Surface enrichment of sodium pools by dissolved and suspended radionuclides<U+F0B7>Thermal decomposition of sodium iodide in the containment atmosphere<U+F0B7>Reactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model …
Date: September 1, 2010
Creator: Powers, Dana Auburn; Clement, Bernard; Denning, Richard; Ohno, Shuji & Zeyen, Roland
Object Type: Report
System: The UNT Digital Library
Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources (open access)

Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented …
Date: September 1, 2010
Creator: Hendricks, Terry J.; Hogan, Tim; Case, Eldon D. & Cauchy, Charles J.
Object Type: Report
System: The UNT Digital Library
Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010 (open access)

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or “Core Modeling Update”) Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).
Date: September 1, 2010
Creator: Aryaeinejad, Rahmat; Crawford, Douglas S.; DeHart, Mark D.; Griffith, George W.; Lucas, D. Scott; Nielsen, Joseph W. et al.
Object Type: Report
System: The UNT Digital Library
Advanced Unit Commitment Strategies for the U.S. Eastern Interconnection: Preprint (open access)

Advanced Unit Commitment Strategies for the U.S. Eastern Interconnection: Preprint

This paper outlines a study undertaken for the U.S. Eastern Interconnection in which different advanced unit commitment strategies were simulated for three different years to evaluate the benefits that may occur from using these strategies as an operational tool.
Date: October 1, 2010
Creator: Ela, E.; Milligan, M.; Meibom, P.; Barth, R. & Tuohy, A.
Object Type: Article
System: The UNT Digital Library
Advanced Vehicles and Fuels Systems: Cooperative Research and Development Final Report, CRADA number CRD-03-00129 (open access)

Advanced Vehicles and Fuels Systems: Cooperative Research and Development Final Report, CRADA number CRD-03-00129

Midwest Research Institute (MRI) and AVL Powertrain Engineering, Inc. (AVL) have executed a Software and Trademark License Agreement (Software License) by which AVL is granted the exclusive right to use, modify and improve and to commercialize by reproducing, distributing and granting sublicenses in, certain computer software known as ADVISOR 2003.
Date: July 1, 2010
Creator: Farrington, R. B.
Object Type: Report
System: The UNT Digital Library