Synthesis and Characterization of Oxide Feedstock Powders for the Fuel Cycle R&D Program (open access)

Synthesis and Characterization of Oxide Feedstock Powders for the Fuel Cycle R&D Program

Nuclear fuel feedstock properties, such as physical, chemical, and isotopic characteristics, have a significant impact on the fuel fabrication process and, by extension, the in-reactor fuel performance. This has been demonstrated through studies with UO{sub 2} spanning greater than 50 years. The Fuel Cycle R&D Program with The Department of Energy Office of Nuclear Energy has initiated an effort to develop a better understanding of the relationships between oxide feedstock, fresh fuel properties, and in-reactor fuel performance for advanced mixed oxide compositions. Powder conditioning studies to enable the use of less than ideal powders for ceramic fuel pellet processing are ongoing at Los Alamos National Laboratory (LANL) and an understanding of methods to increase the green density and homogeneity of pressed pellets has been gained for certain powders. Furthermore, Oak Ridge National Laboratory (ORNL) is developing methods for the co-conversion of mixed oxides along with techniques to analyze the degree of mixing. Experience with the fabrication of fuel pellets using co-synthesized multi-constituent materials is limited. In instances where atomically mixed solid solutions of two or more species are needed, traditional ceramic processing methods have been employed. Solution-based processes may be considered viable synthesis options, including co-precipitation (AUPuC), direct precipitation, direct-conversion …
Date: September 1, 2010
Creator: Voit, Stewart L.; Vedder, Raymond James & Johnson, Jared A.
Object Type: Report
System: The UNT Digital Library
The ArgoNeuT experiment (open access)

The ArgoNeuT experiment

ArgoNeuT is a Liquid Argon Time Projection Chamber neutrino experiment that recently completed its physics run in the NuMI beamline at Fermilab. Along with research and design for future LArTPCs, the experiments goals include performing a number of neutrino and anti-neutrino cross section measurements. Also, ArgoNeuT hopes to further the understanding of the nuclear physics involved in neutrino scattering by characterizing the low energy protons created in such interactions.
Date: January 1, 2010
Creator: Spitz, J. & U., /Yale
Object Type: Article
System: The UNT Digital Library
NREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts (Fact Sheet) (open access)

NREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts (Fact Sheet)

For more than a decade, the National Renewable Energy Laboratory's (NREL) Industry Growth Forum has been the nation's premier event for early-stage clean energy investment. The forum features presentations from the most innovative, promising, and emergent clean energy companies; provocative panels led by thought leaders; and organized networking opportunities. It is the perfect venue for growing cleantech companies to present their business to a wide range of investors.
Date: December 1, 2010
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Titanium-Alloy Power Capacitor: High-Power Titanate Capacitor for Power Electronics (open access)

Titanium-Alloy Power Capacitor: High-Power Titanate Capacitor for Power Electronics

ADEPT Project: There is a constant demand for better performing, more compact, lighter weight, and lower cost electronic devices. Unfortunately, the materials traditionally used to make components for electronic devices have reached their limits. Case Western is developing capacitors made of new materials that could be used to produce the next generation of compact and efficient high-powered consumer electronics and electronic vehicles. A capacitor is an important component of an electronic device. It stores an electric charge and then discharges it into an electrical circuit in the device. Case Western is creating its capacitors from titanium, an abundant material extracted from ore which can be found in the U.S. Case Western's capacitors store electric charges on the surfaces of films, which are grown on a titanium alloy electrode that is formed as a spinal column with attached branches. The new material and spine design make the capacitor smaller and lighter than traditional capacitors, and they enable the component to store 300% more energy than capacitors of the same weight made of tantalum, the current industry standard. Case Western's titanium-alloy capacitors also spontaneously self-repair, which prolongs their life.
Date: September 1, 2010
Creator: unknown
Object Type: Text
System: The UNT Digital Library
Neutrino physics today, important issues and the future (open access)

Neutrino physics today, important issues and the future

The status and the most important issues in neutrino physics will be summarized as well as how the current, pressing questions will be addressed by future experiments. Since the discovery of neutrino flavor transitions by the SuperKamiokande experiment in 1998, which demonstrates that neutrinos change and hence their clocks tick, i.e. they are not traveling at the speed of light and hence are not massless, the field of neutrino physics has made remarkable progress in untangling the nature of the neutrino. However, there are still many important questions to answer.
Date: October 1, 2010
Creator: Parke, Stephen J.
Object Type: Article
System: The UNT Digital Library
Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX) (open access)

Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.
Date: October 1, 2010
Creator: Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L. & Wu, James K.
Object Type: Article
System: The UNT Digital Library
New Particle-in-Cell Code for Numerical Simulation of Coherent Synchrotron Radiation (open access)

New Particle-in-Cell Code for Numerical Simulation of Coherent Synchrotron Radiation

We present a first look at the new code for self-consistent, 2D simulations of beam dynamics affected by the coherent synchrotron radiation. The code is of the particle-in-cell variety: the beam bunch is sampled by point-charge particles, which are deposited on the grid; the corresponding forces on the grid are then computed using retarded potentials according to causality, and interpolated so as to advance the particles in time. The retarded potentials are evaluated by integrating over the 2D path history of the bunch, with the charge and current density at the retarded time obtained from interpolation of the particle distributions recorded at discrete timesteps. The code is benchmarked against analytical results obtained for a rigid-line bunch. We also outline the features and applications which are currently being developed.
Date: May 1, 2010
Creator: Balsa Terzic, Rui Li
Object Type: Article
System: The UNT Digital Library
Microstructural Studies of Uranium-7wt%Molybdenum/Aluminum-2wt%Silicon Dispersion Fuel (open access)

Microstructural Studies of Uranium-7wt%Molybdenum/Aluminum-2wt%Silicon Dispersion Fuel

Document is a thesis.
Date: November 1, 2010
Creator: Miller, Brandon D.
Object Type: Report
System: The UNT Digital Library
Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856). (open access)

Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.
Date: September 1, 2010
Creator: Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott & Asay, James Russell
Object Type: Report
System: The UNT Digital Library
Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010 (open access)

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or “Core Modeling Update”) Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).
Date: September 1, 2010
Creator: Aryaeinejad, Rahmat; Crawford, Douglas S.; DeHart, Mark D.; Griffith, George W.; Lucas, D. Scott; Nielsen, Joseph W. et al.
Object Type: Report
System: The UNT Digital Library
Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors (open access)

Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors

Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, …
Date: November 1, 2010
Creator: Berry, R. A.
Object Type: Report
System: The UNT Digital Library

High Throughput Pretreatment and Enzyme Hydrolysis of Biomass: Screening Recalcitrance in Large Sample Populations

Presentation on the execution of the first high-throughput thermochemical pretreatment/enzyme digestion pipeline for screening biomass for recalcitrance.
Date: October 1, 2010
Creator: Decker, S. R.
Object Type: Presentation
System: The UNT Digital Library
What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions (open access)

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

After rapid growth in economic development and energy demand over the last three decades, China has undertaken energy efficiency improvement efforts to reduce its energy intensity under the 11th Five Year Plan (FYP). Since becoming the world's largest annual CO{sub 2} emitter in 2007, China has set reduction targets for energy and carbon intensities and committed to meeting 15% of its total 2020 energy demand with non-fossil fuel. Despite having achieved important savings in 11th FYP efficiency programs, rising per capita income and the continued economic importance of trade will drive demand for transport activity and fuel use. At the same time, an increasingly 'electrified' economy will drive rapid power demand growth. Greater analysis is therefore needed to understand the underlying drivers, possible trajectories and mitigation potential in the growing industrial, transport and power sectors. This study uses scenario analysis to understand the likely trajectory of China's energy and carbon emissions to 2030 in light of the current and planned portfolio of programs, policies and technology development and ongoing urbanization and demographic trends. It evaluates the potential impacts of alternative transportation and power sector development using two key scenarios, Continued Improvement Scenario (CIS) and Accelerated Improvement Scenario (AIS). CIS represents …
Date: July 1, 2010
Creator: G. Fridley, David; Zheng, Nina & T. Aden, Nathaniel
Object Type: Report
System: The UNT Digital Library
Cryogenic safety aspect of the low -$\beta$ magnest systems at the Large Hadron Collider (LHC) (open access)

Cryogenic safety aspect of the low -$\beta$ magnest systems at the Large Hadron Collider (LHC)

The low-{beta} magnet systems are located in the LHC insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process and will allow proton collisions at a luminosity of up to 10{sup 34}cm{sup -2}s{sup -1}. Large radiation dose deposited at the proximity of the beam collisions dictate stringent requirements for the design and operation of the systems. The hardware commissioning phase of the LHC was completed in the winter of 2010 and permitted to validate this system safe operation. This paper presents the analysis used to qualify and quantify the safe operation of the low-{beta} magnet systems in the Large Hadron Collider (LHC) for the first years of operation.
Date: July 1, 2010
Creator: Darve, C.
Object Type: Article
System: The UNT Digital Library
Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment (open access)

Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.
Date: December 1, 2010
Creator: Jonkman, J. & Musial, W.
Object Type: Report
System: The UNT Digital Library
Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility (open access)

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.
Date: October 1, 2010
Creator: Harvego, Lisa; Duncan, David; Connolly, Joan; Hinman, Margaret; Marcinkiewicz, Charles & Mecham, Gary
Object Type: Report
System: The UNT Digital Library
D0 results on diphoton direct production and double parton interactions in photon + 3 jet events (open access)

D0 results on diphoton direct production and double parton interactions in photon + 3 jet events

We report the measurement of differential diphoton direct production cross sections and a study of photon + 3-jet events with double parton (DP) interactions, based on data taken with the D0 experiment at the Fermilab Tevatron proton-antiproton collider. We measure single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons. In addition, we measure double differential cross sections considering the last three kinematic variables in three diphoton mass bins. The results are compared with different perturbative QCD predictions and event generators. We have used a sample of photon + 3-jet events collected by the D0 experiment with an integrated luminosity of about 1 fb{sup -1} to determine the fraction of events with double parton scattering (f{sub DP}) in a single p{bar p} collision at {radical}s = 1.96 TeV. The DP fraction and effective cross section ({sigma}{sub eff}), a process-independent scale parameter related to the parton density inside the nucleon, are measured in three intervals of the second (ordered in p{sub T}) jet transverse momentum p{sub T}{sup jet2} within the range 15 < p{sub T}{sup jet} < 30 GeV. …
Date: January 1, 2010
Creator: Sawyer, Lee & U., /Louisiana Tech.
Object Type: Article
System: The UNT Digital Library
Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage (open access)

Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.
Date: October 1, 2010
Creator: unknown
Object Type: Text
System: The UNT Digital Library
Solid oxide electrochemical reactor science. (open access)

Solid oxide electrochemical reactor science.

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.
Date: September 1, 2010
Creator: Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea & Key, Robert J. (Colorado School of Mines, Golden, CO)
Object Type: Report
System: The UNT Digital Library
B baryon production and decays and B hadron lifetimes (open access)

B baryon production and decays and B hadron lifetimes

In this paper we review the most recent results concerning B Baryons at CDF and D0, including the observation and the study of the properties of the {Omega}{sub b}{sup -}, {Xi}{sub b}{sup -} and {Sigma}{sub b}{sup {+-}(*)}, the observation of new {Lambda}{sub b}{sup 0} decay modes, and a new measurement of the lifetime of the b hadrons in decays with a J/{Psi}. The {Omega}{sub b}{sup -} baryon is observed through the decay chain {Omega}{sub b}{sup -} {yields} J/{Psi}{Omega}{sup -}, where J/{Psi} {yields} {mu}{sup +}{mu}{sup -}, {Omega}{sup -} {yields} {Lambda}K{sup -}, and {Lambda} {yields} pK{sup -}, using 4.2 fb{sup -1} of data. The {Omega}{sub b}{sup -} mass is measured to be 6054.4 {+-} 6.8(stat.) {+-} 0.9(syst.) MeV/c{sup 2}, and the lifetime 1.13{sub -0.40}{sup +0.53}(stat.) {+-} 0.02(syst.) ps. For the {Xi}{sub b}{sup -} the mass is measured 5790.9 {+-} 2.6(stat.) {+-} 0.8(syst.) MeV/c{sup 2} and the lifetime 1.56{sub -0.25}{sup +0.27}(stat.) {+-} 0.02(syst.) ps. A new accurate measurement of the properties of the resonances {Sigma}{sub b}{sup +}, {Sigma}{sub b}{sup -}, {Sigma}*{sub b}{sup +}, and {Sigma}*{sub b}{sup -} has been performed in 6 fb{sup -1} of data, and the masses have been determined, m({Sigma}{sub b}{sup +}) = 5811.2{sub -0.8}{sup +0.9}(stat.) {+-} 1.7(syst.), m({Sigma}{sub b}{sup …
Date: January 1, 2010
Creator: Donati, S.
Object Type: Article
System: The UNT Digital Library
Economics definitions, methods, models, and analysis procedures for Homeland Security applications. (open access)

Economics definitions, methods, models, and analysis procedures for Homeland Security applications.

This report gives an overview of the types of economic methodologies and models used by Sandia economists in their consequence analysis work for the National Infrastructure Simulation&Analysis Center and other DHS programs. It describes the three primary resolutions at which analysis is conducted (microeconomic, mesoeconomic, and macroeconomic), the tools used at these three levels (from data analysis to internally developed and publicly available tools), and how they are used individually and in concert with each other and other infrastructure tools.
Date: January 1, 2010
Creator: Ehlen, Mark Andrew; Loose, Verne William; Vargas, Vanessa N.; Smith, Braeton J.; Warren, Drake E.; Downes, Paula Sue et al.
Object Type: Report
System: The UNT Digital Library
Energy Recovery Linac: Machine Protection System (open access)

Energy Recovery Linac: Machine Protection System

N/A
Date: January 1, 2010
Creator: Z., Altinbas
Object Type: Report
System: The UNT Digital Library
Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas (open access)

Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas

Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production, The interactions of mercury and arsenic with PdlAl2D3 model thin film sorbents and PdlAh03 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.
Date: January 1, 2010
Creator: Baltrus, J. P.; Granite, E. J.; Pennline, H. W.; Stanko, D.; Hamilton, H.; Rowsell, L. et al.
Object Type: Article
System: The UNT Digital Library
Measuring the flavor asymmetry in the sea quarks of the proton (open access)

Measuring the flavor asymmetry in the sea quarks of the proton

The proton is a composite object made of fundamental, strongly-interacting quarks. Many of the features of the proton can be described by a simple picture based on three valence quarks bound by the exchange of gluons. However, protons are much more complex objects with the vast majority of their mass dynamically generated by Quantum Chromodynamics (QCD). This mass manifests itself through a 'sea' of gluons and quark-antiquark pairs. By measuring Drell-Yan scattering, the Fermilab E-906/SeaQuest experiment will study the sea quark distribution in the proton and, in particular, the unusually large asymmetry between anti-up and anti-down quarks measured by earlier Drell-Yan experiments. This asymmetry cannot simply be generated through pair creation, but rather indicates an underlying, fundamental antiquark component in the proton. Using the same technique, E-906/SeaQuest will also investigate the differences between the antiquark distributions of the free proton and a proton bound in a nucleus. Nuclear binding is expected to modify the quark distributions and it has long been known that the overall quark distributions are different (the EMC effect). Surprisingly, present data suggests that the antiquark distributions and hence the sea distributions are not modified. To accomplish these goals, the experiment will used a 120 GeV proton …
Date: January 1, 2010
Creator: Reimer, Paul E.
Object Type: Article
System: The UNT Digital Library