Commercial and Cost Effective Production of Two-Dimensional Read-Out Boards for Sub-Atomic Particle Detectors (open access)

Commercial and Cost Effective Production of Two-Dimensional Read-Out Boards for Sub-Atomic Particle Detectors

We report results from research aimed at developing and demonstrating production of 2-D readout structures for GEM (Gas Electron Multiplier) charged particle tracking chambers at Tech-Etch. Readout boards of two types, bi-planar and single plane, were fabricated and evaluated. The results show that Tech-Etch can produce suitable boards of either type however the single plane board has a number of advantages both in production and use that will likely make it the preferred choice for GEM tracking chambers.
Date: October 22, 2010
Creator: Crary, David & Majka, Richard
System: The UNT Digital Library
Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility (open access)

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.
Date: October 1, 2010
Creator: Harvego, Lisa; Duncan, David; Connolly, Joan; Hinman, Margaret; Marcinkiewicz, Charles & Mecham, Gary
System: The UNT Digital Library
Low Probability Tail Event Analysis and Mitigation in the BPA Control Area (open access)

Low Probability Tail Event Analysis and Mitigation in the BPA Control Area

This report investigated the uncertainties with the operations of the power system and their contributions to tail events, especially under high penetration of wind. A Bayesian network model is established to quantify the impact of these uncertainties on system imbalance. The framework is presented for a decision support tool, which can help system operators better estimate the need for balancing reserves and prepare for tail events.
Date: October 31, 2010
Creator: Lu, Shuai; Brothers, Alan J.; McKinstry, Craig A.; Jin, Shuangshuang & Makarov, Yuri V.
System: The UNT Digital Library
Understanding and predicting soot generation in turbulent non-premixed jet flames. (open access)

Understanding and predicting soot generation in turbulent non-premixed jet flames.

This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with …
Date: October 1, 2010
Creator: Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R. et al.
System: The UNT Digital Library
Comment on "Wall Forces Produced During ITER Disruptions" by H. R. Strauss, R. Paccagnella, and J. Breslau (PHYSICS OF PLASMAS 17, 082505 (2010) (open access)

Comment on "Wall Forces Produced During ITER Disruptions" by H. R. Strauss, R. Paccagnella, and J. Breslau (PHYSICS OF PLASMAS 17, 082505 (2010)

The paper by H.R. Strauss presents numerical simulations, which pretend to describe the disruption instability in ITER device. The simulations were performed with numerical code M3D, described in Ref.[7] of the paper.
Date: October 20, 2010
Creator: Zakharov, Leonid E.
System: The UNT Digital Library
Foundations to the unified psycho-cognitive engine. (open access)

Foundations to the unified psycho-cognitive engine.

This document outlines the key features of the SNL psychological engine. The engine is designed to be a generic presentation of cognitive entities interacting among themselves and with the external world. The engine combines the most accepted theories of behavioral psychology with those of behavioral economics to produce a unified simulation of human response from stimuli through executed behavior. The engine explicitly recognizes emotive and reasoned contributions to behavior and simulates the dynamics associated with cue processing, learning, and choice selection. Most importantly, the model parameterization can come from available media or survey information, as well subject-matter-expert information. The framework design allows the use of uncertainty quantification and sensitivity analysis to manage confidence in using the analysis results for intervention decisions.
Date: October 1, 2010
Creator: Bernard, Michael Lewis; Bier, Asmeret Brooke; Backus, George A.; Verzi, Stephen J. & Glickman, Matthew R.
System: The UNT Digital Library
Structural simulations of nanomaterials self-assembled from ionic macrocycles. (open access)

Structural simulations of nanomaterials self-assembled from ionic macrocycles.

Recent research at Sandia has discovered a new class of organic binary ionic solids with tunable optical, electronic, and photochemical properties. These nanomaterials, consisting of a novel class of organic binary ionic solids, are currently being developed at Sandia for applications in batteries, supercapacitors, and solar energy technologies. They are composed of self-assembled oligomeric arrays of very large anions and large cations, but their crucial internal arrangement is thus far unknown. This report describes (a) the development of a relevant model of nonconvex particles decorated with ions interacting through short-ranged Yukawa potentials, and (b) the results of initial Monte Carlo simulations of the self-assembly binary ionic solids.
Date: October 1, 2010
Creator: van Swol, Frank B. & Medforth, Craig John
System: The UNT Digital Library
A life cycle cost analysis framework for geologic storage of hydrogen : a scenario analysis. (open access)

A life cycle cost analysis framework for geologic storage of hydrogen : a scenario analysis.

The U.S. Department of Energy has an interest in large scale hydrogen geostorage, which would offer substantial buffer capacity to meet possible disruptions in supply. Geostorage options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and potentially hard rock cavrns. DOE has an interest in assessing the geological, geomechanical and economic viability for these types of hydrogen storage options. This study has developed an ecocomic analysis methodology to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) a version that is fully arrayed such that all four types of geologic storage options can be assessed at the same time, (2) incorporate specific scenarios illustrating the model's capability, and (3) incorporate more accurate model input assumptions for the wells and storage site modules. Drawing from the knowledge gained in the underground large scale geostorage options for natural gas and petroleum in the U.S. and from the potential to store relatively large volumes of CO{sub 2} in geological formations, the hydrogen storage assessment modeling will continue to build on these strengths while maintaining modeling transparency such that other modeling efforts may draw from this project.
Date: October 1, 2010
Creator: Kobos, Peter Holmes; Lord, Anna Snider & Borns, David James
System: The UNT Digital Library
Explicit expressions of impedances and wake functions (open access)

Explicit expressions of impedances and wake functions

Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.
Date: October 1, 2010
Creator: Ng, K. Y. & Bane, K,
System: The UNT Digital Library
Momentum compaction and phase slip factor (open access)

Momentum compaction and phase slip factor

Section 2.3.11 of the Handbook of Accelerator Physics and Engineering on Landau damping is updated. The slip factor and its higher orders are given in terms of the various orders of the momentum compaction. With the aid of a simplified FODO lattice, formulas are given for the alteration of the lower orders of the momentum compaction by various higher multipole magnets. The transition to isochronicity is next demonstrated. Formulas are given for the extraction of the first three orders of the slip factor from the measurement of the synchrotron tune while changing the rf frequency. Finally bunch-length compression experiments in semi-isochronous rings are reported.
Date: October 1, 2010
Creator: Ng, King-Yuen
System: The UNT Digital Library
Primer on Use of Multi-Spectral and Infra Red Imaging for On-Site Inspections (open access)

Primer on Use of Multi-Spectral and Infra Red Imaging for On-Site Inspections

The purpose of an On-Site Inspection (OSI) is to determine whether a nuclear explosion has occurred in violation of the Comprehensive Nuclear Test Ban Treaty (CTBT), and to gather information which might assist in identifying the violator (CTBT, Article IV, Paragraph 35) Multi-Spectral and Infra Red Imaging (MSIR) is allowed by the treaty to detect observables which might help reduce the search area and thus expedite an OSI and make it more effective. MSIR is permitted from airborne measurements, and at and below the surface to search for anomalies and artifacts (CTBT, Protocol, Part II, Paragraph 69b). The three broad types of anomalies and artifacts MSIR is expected to be capable of observing are surface disturbances (disturbed earth, plant stress or anomalous surface materials), human artifacts (man-made roads, buildings and features), and thermal anomalies. The purpose of this Primer is to provide technical information on MSIR relevant to its use for OSI. It is expected that this information may be used for general background information, to inform decisions about the selection and testing of MSIR equipment, to develop operational guidance for MSIR use during an OSI, and to support the development of a training program for OSI Inspectors. References are …
Date: October 26, 2010
Creator: Henderson, J. R.
System: The UNT Digital Library
Science and Technology Review December 2010 (open access)

Science and Technology Review December 2010

This month's issue has the following articles: (1) More Insight to Better Understand Climate Change - Commentary by Tomas Diaz de la Rubia; (2) Strengthening Our Understanding of Climate Change - Researchers at the Center for Accelerator Mass Spectrometry are working to better understand climate variation and sharpen the accuracy of predictive models; (3) Precision Diagnostics Tell All - The National Ignition Facility relies on sophisticated diagnostic instruments for measuring the key physical processes that occur in high-energy-density experiments; (4) Quick Detection of Pathogens by the Thousands - Livermore scientists have developed a device that can simultaneously identify thousands of viruses and bacteria within 24 hours; and (5) Carbon Dioxide into the Briny Deep - A proposed technique for burying carbon dioxide underground could help mitigate the effects of this greenhouse gas while producing freshwater.
Date: October 29, 2010
Creator: Blobaum, K M
System: The UNT Digital Library
A Study of the Use of Jatropha Oil Blends in Boilers (open access)

A Study of the Use of Jatropha Oil Blends in Boilers

Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the …
Date: October 1, 2010
Creator: Krishna, C. R.
System: The UNT Digital Library
NSLS-II: Nonlinear Model Calibration for Synchrotrons (open access)

NSLS-II: Nonlinear Model Calibration for Synchrotrons

This tech note is essentially a summary of a lecture we delivered to the Acc. Phys. Journal Club Apr, 2010. However, since the estimated accuracy of these methods has been naive and misleading in the field of particle accelerators, i.e., ignores the impact of noise, we will elaborate on this in some detail. A prerequisite for a calibration of the nonlinear Hamiltonian is that the quadratic part has been understood, i.e., that the linear optics for the real accelerator has been calibrated. For synchrotron light source operations, this problem has been solved by the interactive LOCO technique/tool (Linear Optics from Closed Orbits). Before that, in the context of hadron accelerators, it has been done by signal processing of turn-by-turn BPM data. We have outlined how to make a basic calibration of the nonlinear model for synchrotrons. In particular, we have shown how this was done for LEAR, CERN (antiprotons) in the mid-80s. Specifically, our accuracy for frequency estimation was {approx} 1 x 10{sup -5} for 1024 turns (to calibrate the linear optics) and {approx} 1 x 10{sup -4} for 256 turns for tune footprint and betatron spectrum. For a comparison, the estimated tune footprint for stable beam for NSLS-II is …
Date: October 8, 2010
Creator: Bengtsson, J.
System: The UNT Digital Library
Shifted power method for computing tensor eigenpairs. (open access)

Shifted power method for computing tensor eigenpairs.

Recent work on eigenvalues and eigenvectors for tensors of order m {>=} 3 has been motivated by applications in blind source separation, magnetic resonance imaging, molecular conformation, and more. In this paper, we consider methods for computing real symmetric-tensor eigenpairs of the form Ax{sup m-1} = {lambda}x subject to {parallel}x{parallel} = 1, which is closely related to optimal rank-1 approximation of a symmetric tensor. Our contribution is a novel shifted symmetric higher-order power method (SS-HOPM), which we showis guaranteed to converge to a tensor eigenpair. SS-HOPM can be viewed as a generalization of the power iteration method for matrices or of the symmetric higher-order power method. Additionally, using fixed point analysis, we can characterize exactly which eigenpairs can and cannot be found by the method. Numerical examples are presented, including examples from an extension of the method to fnding complex eigenpairs.
Date: October 1, 2010
Creator: Mayo, Jackson R. & Kolda, Tamara Gibson
System: The UNT Digital Library
Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project (open access)

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.
Date: October 1, 2010
Creator: Harvego, Lisa & Lehto, Mike
System: The UNT Digital Library
A toolkit for detecting technical surprise. (open access)

A toolkit for detecting technical surprise.

The detection of a scientific or technological surprise within a secretive country or institute is very difficult. The ability to detect such surprises would allow analysts to identify the capabilities that could be a military or economic threat to national security. Sandia's current approach utilizing ThreatView has been successful in revealing potential technological surprises. However, as data sets become larger, it becomes critical to use algorithms as filters along with the visualization environments. Our two-year LDRD had two primary goals. First, we developed a tool, a Self-Organizing Map (SOM), to extend ThreatView and improve our understanding of the issues involved in working with textual data sets. Second, we developed a toolkit for detecting indicators of technical surprise in textual data sets. Our toolkit has been successfully used to perform technology assessments for the Science & Technology Intelligence (S&TI) program.
Date: October 1, 2010
Creator: Trahan, Michael Wayne & Foehse, Mark C.
System: The UNT Digital Library
Used fuel disposition research and development roadmap - FY10 status. (open access)

Used fuel disposition research and development roadmap - FY10 status.

Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute …
Date: October 1, 2010
Creator: Nutt, W. M. (Nuclear Engineering Division)
System: The UNT Digital Library
RECOMMENDATIONS FOR ASSESSING THE UNCERTAINTY IN TANK 18-F WALL SAMPLES (open access)

RECOMMENDATIONS FOR ASSESSING THE UNCERTAINTY IN TANK 18-F WALL SAMPLES

Tank 18-F in the F-Area Tank Farm at the Savannah River Site (SRS) has had measurements taken from its inner vertical sides in order to determine the level of radionuclide and other analyte concentrations attached to the tank walls. In all, three samples have been obtained by drilling shallow holes into the carbon steel walls and consolidating the material. An Upper Wall Sample (Sample ID: Tk 18-1) was formed by combining two drill samples taken at a height of 17 ft above the tank floor, and a Lower Wall Sample (Sample ID: SPD4) was formed by combining two drill samples taken between 10 and 12 ft above the tank floor. A Scale Sample (Sample ID: Tk 18-2) was formed by combining 5 drill samples obtained between 6 and 7 ft above the tank floor. Photographs of the sampled material and a more detailed description of the samples and the concentration results are presented by Hay and others [2009]. The objective of this report is to determine a method and use it to place an upper confidence bound on the concentrations in the wall samples using only the currently available sample information. None of the three wall locations (tank heights) has …
Date: October 26, 2010
Creator: Shine, G.
System: The UNT Digital Library
Comment on "Wall Forces Produced During ITER Disruptions" by H. R. Strauss, R. Paccagnella, and J. Breslau (PHYSICS OF PLASMAS 17, 082505 (2010) (open access)

Comment on "Wall Forces Produced During ITER Disruptions" by H. R. Strauss, R. Paccagnella, and J. Breslau (PHYSICS OF PLASMAS 17, 082505 (2010)

The paper by H.R. Strauss presents numerical simulations, which pretend to describe the disruption instability in ITER device. The simulations were performed with numerical code M3D, described in Ref.[7] of the paper.
Date: October 20, 2010
Creator: Zakharov, Leonid E.
System: The UNT Digital Library
Idaho National Laboratory Site Environmental Monitoring Plan (open access)

Idaho National Laboratory Site Environmental Monitoring Plan

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.
Date: October 1, 2010
Creator: Knight, Joanne L.
System: The UNT Digital Library
Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project (open access)

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.
Date: October 1, 2010
Creator: Mecham, Gary
System: The UNT Digital Library
MANGO – Modal Analysis for Grid Operation: A Method for Damping Improvement through Operating Point Adjustment (open access)

MANGO – Modal Analysis for Grid Operation: A Method for Damping Improvement through Operating Point Adjustment

Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis, also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work …
Date: October 18, 2010
Creator: Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.; Chen, Yousu; Trudnowski, Daniel J.; Diao, Ruisheng et al.
System: The UNT Digital Library
Siting Study for the Remote-Handled Low-Level Waste Disposal Project (open access)

Siting Study for the Remote-Handled Low-Level Waste Disposal Project

The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.
Date: October 1, 2010
Creator: Harvego, Lisa; Connolly, Joan; Peterson, Lance; Orr, Brennon & Starr, Bob
System: The UNT Digital Library