Resource Type

3 Matching Results

Results open in a new window/tab.

TUNING SILICON NANORODS FOR ANODES OF LI-ION RECHARGEABLE BATTERIES (open access)

TUNING SILICON NANORODS FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

Silicon is a promising anode material for Li-ion batteries in regarding of high capacity, low cost and safety, but it suffers poor cycling stability due to the pulverization induced by severe volume expansion/shrinkage (297%) during lithium insertion/extraction. In our previous investigation on aluminum nanorods anodes, it is found the selection of substrates in which Al nanorods grown plays the role in prevention of pulverization resulting in the increase of cycling life. Adapting this knowledge, we investigated the Si based nanorods anodes by tuning its composition and element distribution. Our results show that although the Si nanorods demonstrated higher initial anodic capacity of 1500 mAh/g, it diminished after 50 cycles due to morphology change and pulverization. By codepositing Cu, the Si-Cu composite nanorods demonstrated sustainable capacity of 500 mAh/g in 100 cycles attributing to its flexible and less brittle nature.
Date: November 23, 2010
Creator: Au, M.
System: The UNT Digital Library
Magnetic stochasticity in gyrokinetic simulations of plasma microturbulence (open access)

Magnetic stochasticity in gyrokinetic simulations of plasma microturbulence

None
Date: November 23, 2010
Creator: Nevins, W M; Wang, E & Candy, J
System: The UNT Digital Library
INCORPORATION OF MONO SODIUM TITANATE AND CRYSTALLINE SILICOTITANATE FEEDS IN HIGH LEVEL NUCLEAR WASTE GLASS (open access)

INCORPORATION OF MONO SODIUM TITANATE AND CRYSTALLINE SILICOTITANATE FEEDS IN HIGH LEVEL NUCLEAR WASTE GLASS

Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. All of the glasses studied were considerably more durable than the benchmark Environmental Assessment (EA) glass. The measured Product Consistency Test (PCT) responses were compared with the predicted values from the current DWPF durability model. One of the KT01-series and two of the KT03-series glasses had measured PCT responses that were outside the lower bound of the durability model. All of the KT04 glasses had durabilities that were predictable regardless of heat treatment or compositional view. In general, the measured viscosity values of the KT01, KT03, and KT04-series glasses are well predicted by the current DWPF viscosity model. The results of liquidus temperature (T{sub L}) measurements for the KT01-series glasses were mixed with regard to the predictability of the T{sub L} for each glass. All of the measured T{sub L} values were higher than the model predicted values, although most fell within the …
Date: November 23, 2010
Creator: Fox, K.; Johnson, F. & Edwards, T.
System: The UNT Digital Library