13 Matching Results

Results open in a new window/tab.

Strongly Interacting Matter Matter at Very High Energy Density: 3 Lectures in Zakopane (open access)

Strongly Interacting Matter Matter at Very High Energy Density: 3 Lectures in Zakopane

These lectures concern the properties of strongly interacting matter at very high energy density. I begin with the Color Glass Condensate and the Glasma, matter that controls the earliest times in hadronic collisions. I then describe the Quark Gluon Plasma, matter produced from the thermalized remnants of the Glasma. Finally, I describe high density baryonic matter, in particular Quarkyonic matter. The discussion will be intuitive and based on simple structural aspects of QCD. There will be some discussion of experimental tests of these ideas.
Date: June 9, 2010
Creator: McLerran, L.
System: The UNT Digital Library
Phase Segregation in Polystyrene?Polylactide Blends (open access)

Phase Segregation in Polystyrene?Polylactide Blends

Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.
Date: June 9, 2010
Creator: Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas & Doran, Andrew
System: The UNT Digital Library
Implications of HARP Results for the Energy of the Proton Driver for a Neutrino Factory and Muon Collider (open access)

Implications of HARP Results for the Energy of the Proton Driver for a Neutrino Factory and Muon Collider

Cross-section data from the HARP experiment for pion production by protons from a tantalum target have been convoluted with the acceptance of the front-end channel for the proposed neutrino factory or muon collider and integrated over the full phase space measured by HARP, to determine the beam-energy dependence of the muon yield. This permits a determination of the optimal beam energy for the proton driver for these projects. The cross-section data are corrected for the beam-energy dependent 'amplification' due to the development of hadronic showers in a thick target. The conclusion is that, for constant beam power, the yield is maximum for a beam energy of about 7 GeV, but it is within 10% of this maximum for 4 < T{sub beam} < 11 GeV, and within 20% of the maximum for T{sub beam} as low as 2 GeV. This result is insensitive to which of the two HARP groups results are used, and to which pion generator is used to compute the thick target effects.
Date: June 9, 2010
Creator: Strait, J.; Mokhov, N. V. & Striganov, S. I.
System: The UNT Digital Library
GLOBAL MONITORING OF URANIUM HEXIFLORIDE CYLINDERS NEXT STEPS IN DEVELOPMENT OF AN ACTION PLAN (open access)

GLOBAL MONITORING OF URANIUM HEXIFLORIDE CYLINDERS NEXT STEPS IN DEVELOPMENT OF AN ACTION PLAN

Over 40 industrial facilities world-wide use standardized uranium hexafluoride (UF{sub 6}) cylinders for transport, storage and in-process receiving in support of uranium conversion, enrichment and fuel fabrication processes. UF{sub 6} is processed and stored in the cylinders, with over 50,000 tU of UF{sub 6} transported each year in these International Organization for Standardization (ISO) qualified containers. Although each cylinder is manufactured to an ISO standard that calls for a nameplate with the manufacturer's identification number (ID) and the owner's serial number engraved on it, these can be quite small and difficult to read. Recognizing that each facility seems to use a different ID, a cylinder can have several different numbers recorded on it by means of metal plates, sticky labels, paint or even marker pen as it travels among facilities around the world. The idea of monitoring movements of UF{sub 6} cylinders throughout the global uranium fuel cycle has become a significant issue among industrial and safeguarding stakeholders. Global monitoring would provide the locations, movements, and uses of cylinders in commercial nuclear transport around the world, improving the efficiency of industrial operations while increasing the assurance that growing nuclear commerce does not result in the loss or misuse of cylinders. …
Date: June 9, 2010
Creator: Hanks, D.
System: The UNT Digital Library
End of Enrichment Reconstruction (open access)

End of Enrichment Reconstruction

The age and composition of special nuclear material (SNM) offers a great deal of forensic information; e.g., likely producer or country of origin. Nuclear materials (nuclides) decay at different rates, often in a chain fashion; therefore, the composition of the nuclides changes over time. Trace nuclides in special nuclear material often carry more information regarding age and original composition, but trace nuclides can be easily lost in 'approximations.' Current decay calculation technology is based on a matrix Taylor approximation that is imprecise in nature and time-consuming to compute. Better computational technology for decay calculation and age estimation is needed. This project offers better Nuclear Forensics technology solutions for these needs.
Date: June 9, 2010
Creator: Yuan, Ding
System: The UNT Digital Library
Data Network Equipment Energy Use and Savings Potential in Buildings (open access)

Data Network Equipment Energy Use and Savings Potential in Buildings

Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and …
Date: June 9, 2010
Creator: Lanzisera, Steven; Nordman, Bruce & Brown, Richard E.
System: The UNT Digital Library
Probing the evolution of antiferromagnetism in multiferroics (open access)

Probing the evolution of antiferromagnetism in multiferroics

This study delineates the evolution of magnetic order in epitaxial films of the room-temperature multiferroic BiFeO3 system. Using angle- and temperature-dependent dichroic measurements and spectromicroscopy, we have observed that the antiferromagnetic order in the model multiferroic BiFeO3 evolves systematically as a function of thickness and strain. Lattice-mismatch-induced strain is found to break the easy-plane magnetic symmetry of the bulk and leads to an easy axis of magnetization which can be controlled through strain. Understanding the evolution of magnetic structure and how to manipulate the magnetism in this model multiferroic has significant implications for utilization of such magnetoelectric materials in future applications.
Date: June 9, 2010
Creator: Holcomb, M.; Martin, L.; Scholl, A.; He, Q.; Yu, P.; Yang, C. H. et al.
System: The UNT Digital Library
X-ray Spectromicroscopy Study of Protein Adsorption to a Polystyrene-Polylactide Blend (open access)

X-ray Spectromicroscopy Study of Protein Adsorption to a Polystyrene-Polylactide Blend

Synchrotron-based X-ray photoemission electron microscopy (X-PEEM) was used to study the adsorption of human serum albumin (HSA) to polystyrene-polylactide (40:60 PS-PLA, 0.7 wt percent) thin films, annealed under various conditions. The rugosity of the substrate varied from 35 to 90 nm, depending on the annealing conditions. However, the characteristics of the protein adsorption (amounts and phase preference) were not affected by the changes in topography. The adsorption was also not changed by the phase inversion which occured when the PS-PLA substrate was annealed above Tg of the PLA. The amount of protein adsorbed depended on whether adsorption took place from distilled water or phosphate buffered saline solution. These differences are interpreted as a result of ionic strength induced changes in the protein conformation in solution.
Date: June 9, 2010
Creator: Leung, Bonnie; Hitchcock, Adam; Cornelius, Rena; Brash, John; Scholl, Andreas & Doran, Andrew
System: The UNT Digital Library
Reactor Physics Modeling of Spent Nuclear Research Reactor Fuel for Snm Attribution and Nuclear Forensics (open access)

Reactor Physics Modeling of Spent Nuclear Research Reactor Fuel for Snm Attribution and Nuclear Forensics

Nuclear research reactors are the least safeguarded type of reactor; in some cases this may be attributed to low risk and in most cases it is due to difficulty from dynamic operation. Research reactors vary greatly in size, fuel type, enrichment, power and burnup providing a significant challenge to any standardized safeguard system. If a whole fuel assembly was interdicted, based on geometry and other traditional forensics work, one could identify the material's origin fairly accurately. If the material has been dispersed or reprocessed, in-depth reactor physics models may be used to help with the identification. Should there be a need to attribute research reactor fuel material, the Savannah River National Laboratory would perform radiochemical analysis of samples of the material as well as other non-destructive measurements. In depth reactor physics modeling would then be performed to compare to these measured results in an attempt to associate the measured results with various reactor parameters. Several reactor physics codes are being used and considered for this purpose, including: MONTEBURNS/ORIGEN/MCNP5, CINDER/MCNPX and WIMS. In attempt to identify reactor characteristics, such as time since shutdown, burnup, or power, various isotopes are used. Complexities arise when the inherent assumptions embedded in different reactor physics …
Date: June 9, 2010
Creator: Sternat, M.; Beals, D.; Webb, R. & Nichols, T.
System: The UNT Digital Library
Writable graphene: Breaking sp2 bonds with soft X-rays (open access)

Writable graphene: Breaking sp2 bonds with soft X-rays

We study the stability of various kinds of graphene samples under soft x-ray irradiation. Our results show that in single-layer exfoliated graphene (a closer analog to two-dimensional material), the in-plane carbon-carbon bonds are unstable under x-ray irradiation, resulting in nanocrystalline structures. As the interaction along the third dimension increases by increasing the number of graphene layers or through the interaction with the substrate (epitaxial graphene), the effect of x-ray irradiation decreases and eventually becomes negligible for graphite and epitaxial graphene. Our results demonstrate the importance of the interaction along the third dimension in stabilizing the long range in-plane carbon-carbon bonding, and suggest the possibility of using x-ray to pattern graphene nanostructures in exfoliated graphene.
Date: June 9, 2010
Creator: Zhou, S.; Girit, C.; Scholl, A.; Jozwiak, C.; Siegel, D.; Yu, P. et al.
System: The UNT Digital Library
Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation and Detection (open access)

Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation and Detection

Scintillator materials are used to detect, and in some cases identify, gamma rays. Higher performance scintillators are expensive, hard to manufacture, fragile, and sometimes require liquid nitrogen or cooling engines. But whereas lower-quality scintillators are cheap, easy to manufacture, and more rugged, their performance is lower. At issue: can the desirable qualities of high-and low-performance scintillators be combined to achieve better performance at lower cost? Preliminary experiments show that a LaF{sub 3}:Ce oleic acid-based nanocomposite exhibits a photopeak when exposed to {sup 137}Cs source gamma-radiation. The chemical synthesis of the cerium-doped lanthanum halide nanoparticles are scalable and large quantities of material can be produced at a time, unlike typical crystal growth processes such as the Bridgeman process. Using a polymer composite (Figure 1), produced by LANL, initial measurements of the unloaded and 8% LaF{sub 3}:Ce-loaded sample have been made using {sup 137}Cs sources. Figure 2 shows an energy spectrum acquired for CeF{sub 3}. The lighter plot is the measured polymer-only spectrum and the black plot is the spectrum from the nanocomposite scintillator. As the development of this material continues, the energy resolution is expected to improve and the photopeak-to-Compton ratio will become greater at higher loadings. These measurements show the …
Date: June 9, 2010
Creator: Paul Guss, Sanjoy Mukhopadhyay, Ron Guise, Ding Yuan
System: The UNT Digital Library
Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001) (open access)

Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001)

Magnetic domain evolution at the spin reorientation transition (SRT) of (Fe/Ni)/Cu/Ni/Cu(001) is investigated using photoemission electron microscopy. While the (Fe/Ni) layer exhibits the SRT, the interlayer coupling of the perpendicularly magnetized Ni layer to the (Fe/Ni) layer serves as a virtual perpendicular magnetic field exerted on the (Fe/Ni) layer. We find that the perpendicular virtual magnetic field breaks the up-down symmetry of the (Fe/Ni) stripe domains to induce a net magnetization in the normal direction of the film. Moreover, as the virtual magnetic field increases to exceed a critical field, the stripe domain phase evolves into a bubble domain phase. Although the critical field depends on the Fe film thickness, we show that the area fraction of the minority domain exhibits a universal value that determines the stripe-to-bubble phase transition.
Date: June 9, 2010
Creator: Wu, J.; Choi, J.; Won, C.; Wu, Y. Z.; Scholl, A.; Doran, A. et al.
System: The UNT Digital Library
Atmospheric chemistry of isopropyl formate and tert-butyl formate (open access)

Atmospheric chemistry of isopropyl formate and tert-butyl formate

Article on the atmospheric chemistry of isopropyl formate and tert-butyl formate.
Date: June 9, 2010
Creator: Pimentel, Andre Silva; Tyndall, Geoffrey S. (Geoffrey Stuart) 1955-; Orlando, John J.; Hurley, Michale D.; Wallington, Timothy J.; Sulbaek Andersen, Mads Peter et al.
System: The UNT Digital Library