Resource Type

173 Matching Results

Results open in a new window/tab.

Autobiographical Memories for Very Negative Events: The Effects of Thinking about and Rating Memories (open access)

Autobiographical Memories for Very Negative Events: The Effects of Thinking about and Rating Memories

Article on autobiographical memories for very negative events and the effects of thinking about and rating memories.
Date: February 1, 2010
Creator: Rubin, David C.; Boals, Adriel & Klein, Kitty
System: The UNT Digital Library
The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader (open access)

The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader

Cupriavidus necator JMP134 (formerly Ralstonia eutropha JMP134) is a Gram-negative {beta}-proteobacterium able to degrade a variety of chloroaromatic compounds and chemically-related pollutants. It was originally isolated based on its ability to use 2,4 dichlorophenoxyacetic acid (2,4-D) as a sole carbon and energy source [1]. In addition to 2,4-D, this strain can also grow on a variety of aromatic substrates, such as 4-chloro-2-methylphenoxyacetate (MCPA), 3-chlorobenzoic acid (3-CB) [2], 2,4,6-trichlorophenol [3], and 4-fluorobenzoate [4]. The genes necessary for 2,4-D utilization have been identified. They are located in two clusters on plasmid pPJ4: tfd{sub I} and tfd{sub II} [5,6,7,8]. The sequence and analysis of plasmid pJP4 was reported and a congruent model for bacterial adaptation to chloroaromatic pollutants was proposed [9]. According to this model, catabolic gene clusters assemble in a modular manner into broad-host-range plasmid backbones by means of repeated chromosomal capture events. Cupriavidus and related Burkholderia genomes are typically multipartite, composed of two large replicons (chromosomes) accompanied by classical plasmids. Previous work with Burkholderia xenovorans LB400 revealed a differential gene distribution with core functions preferentially encoded by the larger chromosome and secondary functions by the smaller [10]. It has been proposed that the secondary chromosomes in many bacteria originated from ancestral …
Date: February 1, 2010
Creator: Lykidis, Athanasios; Perez-Pantoja, Danilo; Ledger, Thomas; Mavromatis, Kostantinos; Anderson, Iain J.; Ivanova, Natalia N. et al.
System: The UNT Digital Library
Detector design for high-resolution MeV photon imaging of cargo containers using spectral information (open access)

Detector design for high-resolution MeV photon imaging of cargo containers using spectral information

Monte Carlo simulations of a pixelated detector array of inorganic scintillators for high spatial resolution imaging of 1-9 MeV photons are presented. The results suggest that a detector array of 0.5 cm x 0.5 cm x 5 cm pixels of bismuth germanate may provide sufficient efficiency and spatial resolution to permit imaging of an object with uncertainties in dimension of several mm. The cross talk between pixels is found to be in the range of a few percent when pixels are shielded by {approx} 1mm of lead or tungsten. The contrast at the edge of an object is greatly improved by rejection of events depositing less than {approx} 1 MeV. Given the relatively short decay time of BGO, the simulations suggest that such a detector may prove adequate for the purpose of rapid scanning of highly-shielded cargos for possible presence of high atomic number (including clandestine fissionable) materials when used with low current high duty factor x-ray sources.
Date: February 1, 2010
Creator: Descalle, M A; Vetter, K; Hansen, A; Daniels, J & Prussin, S G
System: The UNT Digital Library
Effect of Forging Strain Rate and Deformation Temperature on the Mechanical Properties of Warm-Worked 304L Stainless Steel (open access)

Effect of Forging Strain Rate and Deformation Temperature on the Mechanical Properties of Warm-Worked 304L Stainless Steel

Stainless steel 304L forgings were produced with four different types of production forging equipment – hydraulic press, mechanical press, screw press, and high-energy rate forging (HERF). Each machine imparted a different nominal strain rate during the deformation. The final forgings were done at the warm working (low hot working) temperatures of 816 ◦C, 843 ◦C, and 871 ◦C. The objectives of the study were to characterize and understand the effect of industrial strain rates (i.e. processing equipment), and deformation temperature on the mechanical properties for the final component. Some of the components were produced with an anneal prior to the final forging while others were deformed without the anneal. The results indicate that lower strain rates produced lower strength and higher ductility components, but the lower strain rate processes were more sensitive to deformation temperature variation and resulted in more within-part property variation. The highest strain rate process, HERF, resulted in slightly lower yield strength due to internal heating. Lower processing temperatures increased strength, decreased ductility but decreased within-part property variation. The anneal prior to the final forging produced a decrease in strength, a small increase in ductility, and a small decrease of within-part property variation.
Date: February 1, 2010
Creator: Switzner, Nathan T
System: The UNT Digital Library
EVALUATION OF PLUTONIUM OXIDE DESTRUCTIVE CHEMICAL ANALYSES FOR VALIDITY OF ORIGINAL 3013 CONTAINER BINNING (open access)

EVALUATION OF PLUTONIUM OXIDE DESTRUCTIVE CHEMICAL ANALYSES FOR VALIDITY OF ORIGINAL 3013 CONTAINER BINNING

The surveillance program for 3013 containers is based, in part, on the separation of containers into various bins related to potential container failure mechanisms. The containers are assigned to bins based on moisture content and pre-storage estimates of content chemistry. While moisture content is measured during the packaging of each container, chemistry estimates are made by using a combination of process knowledge, packaging data and prompt gamma analyses to establish the moisture and chloride/fluoride content of the materials. Packages with high moisture and chloride/fluoride contents receive more detailed surveillances than packages with less chloride/fluoride and/or moisture. Moisture verification measurements and chemical analyses performed during the surveillance program provided an opportunity to validate the binning process. Validation results demonstrated that the binning effort was generally successful in placing the containers in the appropriate bin for surveillance and analysis.
Date: February 1, 2010
Creator: Mcclard, J. & Kessinger, G.
System: The UNT Digital Library
EVIDENCE OF CORROSIVE GAS FORMED BY RADIOLYSIS OF CHLORIDE SALTS IN PLUTONIUM-BEARING MATERIALS (open access)

EVIDENCE OF CORROSIVE GAS FORMED BY RADIOLYSIS OF CHLORIDE SALTS IN PLUTONIUM-BEARING MATERIALS

Corrosion and pitting have been observed in headspace regions of stainless steel containers enclosing plutonium oxide/salt mixtures. These observations are consistent with the formation of a corrosive gas, probably HCl, and transport of that gas to the headspace regions of sealed containers. The NH{sub 4}Cl films found on the walls of the sealed containers is also indicative of the presence of HCl gas. Radiolysis of hydrated alkaline earth salts is the probable source of HCl.
Date: February 1, 2010
Creator: Dunn, K. & Louthan, M.
System: The UNT Digital Library
GAS ANALYSES FROM HEADSPACE OF PLUTONIUM-BEARING MATERIALS CONTAINERS (open access)

GAS ANALYSES FROM HEADSPACE OF PLUTONIUM-BEARING MATERIALS CONTAINERS

The Savannah River National Laboratory (SRNL) 3013 destructive examination program performs surveillances on 3013 containers originating from multiple sites across the DOE complex. The bases for the packaging, storage, and surveillance activities are derived from the Department of Energy's 3013 Standard (DOE-STD-3013-2004). During destructive examination, headspace gas samples are obtained from the 3013 inner container and the annulus between the outer and inner containers. To characterize gas species, the samples are analyzed by gas chromatography (GC), direct-inlet mass spectrometry (DIMS), and Fourier-transform infrared spectroscopy (FTIR). The GC results, as well as other parameters, are utilized as input into the gas evaluation software tool (GEST) program for computation of pre-puncture gas compositions and pressures. Over 30 containers from the Hanford Site and the Rocky Flats Environmental Technology Site (RFETS) have been examined in the first three years of the surveillance program. Several containers were shown to have appreciable hydrogen content (some greater than 30 mol %), yet little or no oxygen was detected in any of the containers, including those exhibiting high hydrogen concentrations. Characteristics including moisture content, surface area, and material composition, along with the headspace gas composition, are utilized in an attempt to explain the chemical behavior of the …
Date: February 1, 2010
Creator: Almond, P.; Livingston, R.; Traver, L.; Arnold, M.; Bridges, N.; Kessinger, G. et al.
System: The UNT Digital Library
Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies: Preprint (open access)

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies: Preprint

Techniques for evaluating and quantifying integrated transient and continuous heat loads of combined systems incorporating electric drive systems operating primarily under transient duty cycles.
Date: February 1, 2010
Creator: Bennion, K. & Thornton, M.
System: The UNT Digital Library
Jet Physics at the Tevatron (open access)

Jet Physics at the Tevatron

Jets have been used to verify the theory of quantum chromodynamics (QCD), measure the structure of the proton and to search for the physics beyond the Standard Model. In this article, we review the current status of jet physics at the Tevatron, a {radical}s = 1.96 TeV p{bar p} collider at the Fermi National Accelerator Laboratory. We report on recent measurements of the inclusive jet production cross section and the results of searches for physics beyond the Standard Model using jets. Dijet production measurements are also reported.
Date: February 1, 2010
Creator: Bhatti, Anwar & Lincoln, Don
System: The UNT Digital Library
MASSIVELY PARALLEL FULLY COUPLED IMPLICIT MODELING OF COUPLED THERMAL-HYDROLOGICAL-MECHANICAL PROCESSES FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIRS (open access)

MASSIVELY PARALLEL FULLY COUPLED IMPLICIT MODELING OF COUPLED THERMAL-HYDROLOGICAL-MECHANICAL PROCESSES FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIRS

Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing) to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid system and our ability to reliably predict how reservoirs behave under stimulation and production. In order to increase our understanding of how reservoirs behave under these conditions, we have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a continuum multiphase flow and heat transport model. In DEM simulations, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external load is applied. DEM …
Date: February 1, 2010
Creator: Podgorney, Robert; Huang, Hai & Gaston, Derek
System: The UNT Digital Library
MATERIAL PROPERTIES OF PLUTONIUM-BEARING OXIDES STORED IN STAINLESS STEEL CONTAINERS (open access)

MATERIAL PROPERTIES OF PLUTONIUM-BEARING OXIDES STORED IN STAINLESS STEEL CONTAINERS

The destructive examination (DE) of 3013 containers after storage is part of the Surveillance and Monitoring Program based on the Department of Energy's standard for long-term storage of Pu (DOE-STD-3013). The stored, Pu-bearing materials may contain alkali halide contamination that varies from trace amounts of salt to about 50 weight percent, with smaller fractions of other compounds and oxides. These materials were characterized prior to packaging, and surveillance characterizations are conducted to determine the behavior of the materials during long term storage. The surveillance characterization results are generally in agreement with the pre-surveillance data. The predominant phases identified by X-ray diffraction are in agreement with the expected phase assemblages of the as-received materials. The measured densities are in reasonable agreement with the expected densities of materials containing the fraction of salts and actinide oxide specified by the pre-surveillance data. The radiochemical results are generally in good agreement with the pre-surveillance data for mixtures containing 'weapons grade' Pu (nominally 94% {sup 239}Pu and 6% {sup 240}Pu); however, the ICP-MS results from the present investigation generally produce lower concentrations of Pu than the pre-surveillance analyses. For mixtures containing 'fuel grade' Pu (nominally 81-93% {sup 239}Pu and 7-19% {sup 240}Pu), the ICP-MS results …
Date: February 1, 2010
Creator: Kessinger, G.; Almond, P.; Bridges, N.; Bronikowski, M.; Crowder, M.; Duffey, J. et al.
System: The UNT Digital Library
Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV (open access)

Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

We describe the measurement of the depth of maximum, X{sub max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10{sup 18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106{sub -21}{sup +35}) g/cm{sup 2}/decade below 10{sup 18.24 {+-} 0.05}eV, and (24 {+-} 3) g/cm{sup 2}/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm{sup 2}. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.
Date: February 1, 2010
Creator: Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I. et al.
System: The UNT Digital Library
Measurement of the Top Quark Mass and ppbar -> ttbar Cross Section in the All-Hadronic Mode with the CDFII Detector (open access)

Measurement of the Top Quark Mass and ppbar -> ttbar Cross Section in the All-Hadronic Mode with the CDFII Detector

We present a measurement of the top quark mass and of the top-antitop pair production cross section using p{bar p} data collected with the CDF II detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb{sup -1}. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 {+-} 2.4(stat+JES){sub -1.0}{sup +1.2}(syst)GeV/c{sup 2}, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, {sigma}{sub t{bar t}} = 7.2 {+-} 0.5(stat) {+-} 1.0(syst) {+-} 0.4(lum) pb, for the measured values of top quark mass and JES.
Date: February 1, 2010
Creator: Aaltonen, T.; Phys., /Helsinki Inst. of; Adelman, J.; /Chicago U., EFI; Alvarez Gonzalez, B.; Phys., /Cantabria Inst. of et al.
System: The UNT Digital Library
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Soft Electron b-Tagging (open access)

Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Soft Electron b-Tagging

We present a measurement of the top quark pair production cross section in p{bar p} collisions at {radical}s = 1.96 TeV using a data sample corresponding to 1.7 fb{sup -1} of integrated luminosity collected with the Collider Detector at Fermilab. We reconstruct t{bar t} events in the lepton+jets channel, consisting of e{nu}+jets and {mu}{nu}+jets final states. The dominant background is the production of W bosons in association with multiple jets. To suppress this background, we identify electrons from the semileptonic decay of heavy-flavor jets ('soft electron tags'). From a sample of 2196 candidate events, we obtain 120 tagged events with a background expectation of 51 {+-} 3 events, corresponding to a cross section of {sigma}{sub t{bar t}} = 7.8 {+-} 2.4 (stat) {+-} 1.6 (syst) {+-} 0.5 (lumi) pb. We assume a top-quark mass of 175 GeV/c{sup 2}. This is the first measurement of the t{bar t} cross section with soft electron tags in Run II of the Tevatron.
Date: February 1, 2010
Creator: Aaltonen, T.; Adelman, J.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D. et al.
System: The UNT Digital Library
Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture (open access)

Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.
Date: February 1, 2010
Creator: Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe et al.
System: The UNT Digital Library
Monitoring annealing via carbon dioxide laser heating of defect populations in fused silica surfaces using photoluminescence microscopy (open access)

Monitoring annealing via carbon dioxide laser heating of defect populations in fused silica surfaces using photoluminescence microscopy

Photoluminescence (PL) microscopy and spectroscopy under 266 nm and 355 nm laser excitation are explored as a means of monitoring defect populations in laser-modified sites on the surface of fused silica and their subsequent response to heating to different temperatures via exposure to a CO{sub 2} laser beam. Laser-induced temperature changes were estimated using an analytic solution to the heat flow equation and compared to changes in the PL emission intensity. The results indicate that the defect concentrations decrease significantly with increasing CO{sub 2} laser exposure and are nearly eliminated when the peak surface temperature exceeds the softening point of fused silica ({approx}1900K), suggesting that this method might be suitable for in situ monitoring of repair of defective sites in fused silica optical components.
Date: February 1, 2010
Creator: Raman, R. N.; Matthews, M. J.; Adams, J. J. & Demos, S. G.
System: The UNT Digital Library
NONDESTRUCTIVE EXAMINATION OF PLUTONIUM-BEARING MATERIAL CONTAINERS (open access)

NONDESTRUCTIVE EXAMINATION OF PLUTONIUM-BEARING MATERIAL CONTAINERS

The first nondestructive examination (NDE) of 3013-type containers as part of the Department of Energy's (DOE's) Integrated Surveillance Program (ISP) was performed in February, 2005. Since that date 280 NDE surveillances on 255 containers have been conducted. These containers were packaged with plutonium-bearing materials at multiple DOE sites. The NDE surveillances were conducted at Hanford, Lawrence Livermore National Laboratory (LLNL), and Savannah River Site (SRS). These NDEs consisted of visual inspection, mass verification, radiological surveys, prompt gamma analysis, and radiography. The primary purpose of performing NDE surveillances is to determine if there has been a significant pressure buildup inside the inner 3013 container. This is done by measuring the lid deflection of the inner 3013 container using radiography images. These lid deflection measurements are converted to pressure measurements to determine if a container has a pressure of a 100 psig or greater. Making this determination is required by Surveillance and Monitoring Plan (S&MP). All 3013 containers are designed to withstand at least 699 psig as specified by DOE-STD-3013. To date, all containers evaluated have pressures under 50 psig. In addition, the radiography is useful in evaluating the contents of the 3013 container as well as determining the condition of the …
Date: February 1, 2010
Creator: Yerger, L.; Mcclard, J.; Traver, L. & Grim, T.
System: The UNT Digital Library
Nonlinear accelerator lattices with one and two analytic invariants (open access)

Nonlinear accelerator lattices with one and two analytic invariants

Integrable systems appeared in physics long ago at the onset of classical dynamics with examples being Kepler's and other famous problems. Unfortunately, the majority of nonlinear problems turned out to be nonintegrable. In accelerator terms, any 2D nonlinear nonintegrable mapping produces chaotic motion and a complex network of stable and unstable resonances. Nevertheless, in the proximity of an integrable system the full volume of such a chaotic network is small. Thus, the integrable nonlinear motion in accelerators has the potential to introduce a large betatron tune spread to suppress instabilities and to mitigate the effects of space charge and magnetic field errors. To create such an accelerator lattice one has to find magnetic and electric field combinations leading to a stable integrable motion. This paper presents families of lattices with one invariant where bounded motion can be easily created in large volumes of the phase space. In addition, it presents 3 families of integrable nonlinear accelerator lattices, realizable with longitudinal-coordinate-dependent magnetic or electric fields with the stable nonlinear motion, which can be solved in terms of separable variables.
Date: February 1, 2010
Creator: Danilov, V. & Nagaitsev, S.
System: The UNT Digital Library
Observation of New Charmless Decays of Bottom Hadrons (open access)

Observation of New Charmless Decays of Bottom Hadrons

The authors search for new charmless decays of neutral b-hadrons to pairs of charged hadrons with the upgraded Collider Detector at the Fermilab Tevatron. Using a data sample corresponding to 1 fb{sup -1} of integrated luminosity, they report the first observation of the B{sub s}{sup 0} {yields} K{sup +}{pi}{sup +} decay, with a significance of 8.2{sigma}, and measure {Beta}(B{sub s}{sup 0} {yields} K{sup -}{pi}{sup +}) = (5.0 {+-} 0.7 (stat.) {+-} 0.8 (syst.)) x 10{sup -6}. They also report the first observation of charmless b-baryon decays in the channels {Lambda}{sub b}{sup 0} {yields} p{pi}{sup -} and {Lambda}{sub b}{sup 0} {yields} pK{sup -} with significances of 6.0{sigma} and 11.5{sigma} respectively, and they measure {Beta}({Lambda}{sub b}{sup 0} {yields} p{pi}{sup -}) = (3.5 {+-} 0.6 (stat.) {+-} 0.9 (syst.)) x 10{sup -6} and {Beta}({Lambda}{sub b}{sup 0} {yields} pK{sup -}) = (5.6 {+-} 0.8 (stat.) {+-} 1.5 (syst.)) x 10{sup -6}. No evidence is found for the decays B{sup 0} {yields} K{sup +}K{sup -} and B{sub s}{sup 0} {yields} {pi}{sup +}{pi}{sup -}, and they set an improved upper limit {Beta}(B{sub s}{sup 0} {yields} {pi}{sup +}{pi}{sup -}) < 1.2 x 10{sup -6} at the 90% confidence level. All quoted branching fractions are measured using {Beta}(B{sup …
Date: February 1, 2010
Creator: Morello, Michael J.
System: The UNT Digital Library
Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project (open access)

Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project

We present the results of coupled thermal, hydraulic, and mechanical (THM) modeling of a proposed stimulation injection associated with an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths below 3 km. Accurate micro-earthquake monitoring from the start of the injection will be used as a tool for tracking the development of the EGS. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11), located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect …
Date: February 1, 2010
Creator: Rutqvist, J.; Oldenburg, C. M. & Dobson, P. F.
System: The UNT Digital Library
PRESSURE DEVELOPMENT IN SEALED CONTAINERS WITH PLUTONIUM BEARING MATERIALS (open access)

PRESSURE DEVELOPMENT IN SEALED CONTAINERS WITH PLUTONIUM BEARING MATERIALS

Gas generation by plutonium-bearing materials in sealed containers has been studied. The gas composition and pressure are determined over periods from months to years. The Pu-bearing materials studied represent those produced by all of the major processes used by DOE in the processing of plutonium and include the maximum amount of water (0.5% by weight) allowed by DOE's 3013 Standard. Hydrogen generation is of high interest and the Pu-bearing materials can be classed according to how much hydrogen is generated. Hydrogen generation by high-purity plutonium oxides packaged under conditions typical for actual 3013 materials is minimal, with very low generation rates and low equilibrium pressures. Materials with chloride salt impurities have much higher hydrogen gas generation rates and result in the highest observed equilibrium hydrogen pressures. Other materials such as those with high metal oxide impurities generate hydrogen at rates in between these extremes. The fraction of water that is converted to hydrogen gas as equilibrium is approached ranges from 0% to 25% under conditions typical of materials packaged to the 3013 Standard. Generation of both hydrogen and oxygen occurs when liquid water is present. The material and moisture conditions that result in hydrogen and oxygen generation for high-purity plutonium …
Date: February 1, 2010
Creator: Duffey, J. & Livingston, R.
System: The UNT Digital Library
PRESSURE INTEGRITY OF 3013 CONTAINER UNDER POSTULATED ACCIDENT CONDITIONS (open access)

PRESSURE INTEGRITY OF 3013 CONTAINER UNDER POSTULATED ACCIDENT CONDITIONS

A series of tests was carried out to determine the threshold for deflagration-to-detonation transition (DDT), structural loading, and structural response of the Department of Energy 3013 storage systems for the case of an accidental explosion of evolved gas within the storage containers. Three experimental fixtures were used to examine the various issues and three mixtures consisting of either stoichiometric hydrogen-oxygen, stoichiometric hydrogen-oxygen with added nitrogen, or stoichiometric hydrogen-oxygen with an added nitrogen-helium mixture were tested. Tests were carried out as a function of initial pressure from 1 to 3.5 bar and initial temperature from room temperature to 150 C. The elevated temperature tests resulted in a slight increase in the threshold pressure for DDT. The elevated temperature tests were performed to ensure the test results were bounding. Because the change was not significant the elevated temperature data are not presented in the paper. The explosions were initiated with either a small spark or a hot surface. Based on the results of these tests under the conditions investigated, it can be concluded that DDT of a stoichiometric hydrogen-oxygen mixture (and mixtures diluted with nitrogen and helium) within the 3013 containment system does not pose a threat to the structural integrity of …
Date: February 1, 2010
Creator: Rawls, G.
System: The UNT Digital Library
Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint (open access)

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint

A procedure is described to measure approximate real-world air conditioning fuel use and assess the impact of thermal load reduction strategies in plug-in hybrid electric vehicles.
Date: February 1, 2010
Creator: Rugh, J.
System: The UNT Digital Library
Reactivity of Biogenic Manganese Oxide for Metal Sequestration and Photochemistry: Computational Solid State Physics Study (open access)

Reactivity of Biogenic Manganese Oxide for Metal Sequestration and Photochemistry: Computational Solid State Physics Study

Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.
Date: February 1, 2010
Creator: Kwon, K.D. & Sposito, G.
System: The UNT Digital Library