Month

72 Matching Results

Results open in a new window/tab.

LIS in low power density for RHIC-EBIS (open access)

LIS in low power density for RHIC-EBIS

The Electron Beam Ion Source (EBIS) project at Brookhaven National Laboratory is a new heavy ion preinjector for Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. Laser Ion Source (LIS), which can supply many heavy ion species using solid targets, is a candidate of a primary ion source provider for RHIC-EBIS. LIS experiment with 5 Hz operation, which is required practically in RHIC-EBIS, was demonstrated to understand the beam property for long operation time. High laser power density decayed the peak current and ion yield with operation time and did not keep the surface of target flat. On the contrary, the beam in low laser power density kept the performance in long operation time.
Date: May 23, 2010
Creator: Kondo, K.; Kanesue, T.; Dabrowski, R. & Okamura, M.
Object Type: Article
System: The UNT Digital Library
Magnet design of the ENC@FAIR interaction region (open access)

Magnet design of the ENC@FAIR interaction region

The Electron Nucleon Collider, proposed as an extension to the High Energy Storage Ring (HESR), is currently investigated and a first layout of the Interaction Region (IR) proposed. The limited size of the machine, the low beam energy and the Lorentz force vector pointing in the same direction for both beams make the IR design demanding. In this paper we present the parameters of the IR magnets, show the boundary conditions given by the beam dynamics and the experiments. We present first 2D designs for the electron and proton triplet magnets along with the separating dipole next to the collision point. Different methods to shield the beam in the spectrometer dipoles are investigated and presented.
Date: May 23, 2010
Creator: Schnizer, P.; Montag, C.; Aulenbacher, K.; Jankowiak, A. & Ludwig-Mertin, U.
Object Type: Article
System: The UNT Digital Library
DPIS for warm dense matter (open access)

DPIS for warm dense matter

Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.
Date: May 23, 2010
Creator: Kondo, K.; Kanesue, T.; Horioka, K. & Okamura, M.
Object Type: Article
System: The UNT Digital Library
Spin dynamics simulations at AGS (open access)

Spin dynamics simulations at AGS

To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.
Date: May 23, 2010
Creator: Huang, H.; MacKay, W. W.; Meot, F. & Roser, T.
Object Type: Article
System: The UNT Digital Library
RHIC PROTON BEAM LIFETIME INCREASE WITH 10- AND 12-POLE CORRECTORS (open access)

RHIC PROTON BEAM LIFETIME INCREASE WITH 10- AND 12-POLE CORRECTORS

The RHIC beam lifetime in polarized proton operation is dominated by the beam-beam effect, parameter modulations, and nonlinear magnet errors in the interaction region magnets. Sextupole and skew sextupole errors have been corrected deterministically for a number of years based on tune shift measurements with orbit bumps in the triplets. During the most recent polarized proton run 10- and 12- pole correctors were set through an iterative procedure, and used for the first time operationally in one of the beams. We report on the procedure to set these high-order multipole correctors and estimate their effect on the integrated luminosity.
Date: May 23, 2010
Creator: Fischer, W.
Object Type: Article
System: The UNT Digital Library
Measurements of Fast Transition Instability in RHIC (open access)

Measurements of Fast Transition Instability in RHIC

A fast transition instability presents a limiting factor for ion beam intensity in RHIC. Several pieces of evidence show that electron clouds play an important role in establishing the threshold of this instability. In RHIC Runs8 the measurements of the instability, using a button BPM, were done in order to observe details of the instability development on the scale over hundreds and thousands turns. The paper presents and discusses the results of those measurements in time and frequency domains.
Date: May 23, 2010
Creator: Ptitsyn, V.; Blaskiewicz, M.; Fischer, W.; Lee, R. & Zhang, S. Y.
Object Type: Article
System: The UNT Digital Library
RHIC Performance During the FY10 200 GeV Au+Au Heavy Ion Run (open access)

RHIC Performance During the FY10 200 GeV Au+Au Heavy Ion Run

Since the last successful RHIC Au+Au run in 2007 (Run-7), the RHIC experiments have made numerous detector improvements and upgrades. In order to benefit from the enhanced detector capabilities and to increase the yield of rare events in the acquired heavy ion data a significant increase in luminosity is essential. In Run-7 RHIC achieved an average store luminosity of <L> = 12 x 10{sup 26} cm{sup -2} s{sup -1} by operating with 103 bunches (out of 111 possible), and by squeezing to {beta}* = 0.85 m. This year, Run-10, we achieved <L> = 20 x 10{sup 26} cm{sup -2} s{sup -1}, which put us an order of magnitude above the RHIC design luminosity. To reach these luminosity levels we decreased {beta}* to 0.75 m, operated with 111 bunches per ring, and reduced longitudinal and transverse emittances by means of bunched-beam stochastic cooling. In addition we introduced a lattice to suppress intra-beam scattering (IBS) in both RHIC rings, upgraded the RF control system, and separated transition crossing times in the two rings. We present an overview of the changes and the results of Run-10 performance.
Date: May 23, 2010
Creator: Brown, K. A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J. et al.
Object Type: Article
System: The UNT Digital Library
E-Cloud Drivent Single-Bunch Instabilities in PS2 (open access)

E-Cloud Drivent Single-Bunch Instabilities in PS2

One of the proposals under consideration for future upgrades of the LHC injector complex entails the replacement of the PS with the PS2, a longer circumference and higher energy synchrotron, with electron cloud effects representing a potentially serious limitation to the achievement of the upgrade goals. We report on ongoing numerical studies aiming at estimating the e-cloud density threshold for the occurrence of single bunch instabilities.
Date: May 23, 2010
Creator: Venturini, M.; Furman, M.; Penn, G.; Secondo, R.; Vay, J. L.; De Maria, R. et al.
Object Type: Article
System: The UNT Digital Library
Lattice design for the ERL electron ion collider in RHIC (open access)

Lattice design for the ERL electron ion collider in RHIC

We present electron ion collider lattice design for the Relativistic Heavy Ion Collider (eRHIC) where the electrons have multi-passes through recirculating linacs (ERL) and arcs placed in the existing RHIC tunnel. The present RHIC interaction regions (IR's), where the electron ion collisions will occur, are modified to allow for the large luminosity. Staging of eRHIC will bring the electron energy from 4 up to 20 (30) GeV as the superconducting cavities are built and installed sequentially. The synchrotron radiation from electrons at the IR is reduced as they arrive straight to the collision while ions and protons come with 10 mrad crossing angle using the crab cavities.
Date: May 23, 2010
Creator: Trbojevic, D.; Beebe-Wang, J.; Tsoupas, N.; Chang, X.; Kayran, D.; Ptitsyn, V. et al.
Object Type: Article
System: The UNT Digital Library
Signal quality of the LHC AC dipoles and its impact on beam dynamics (open access)

Signal quality of the LHC AC dipoles and its impact on beam dynamics

The adiabaticity of the AC dipole might be compromised by noise or unwanted frequency components in its signal. An effort has been put to characterize and optimize the signal quality of the LHC AC dipoles. The measured signal is used in realistic simulations in order to evaluate its impact on beam dynamics and to ultimately establish safe margins for the operation of the LHC AC dipoles.
Date: May 23, 2010
Creator: Miyamoto, R.; Cattin, M.; Serrano, J. & Tomas, R.
Object Type: Article
System: The UNT Digital Library
Recent Triplet Vibration Studies in RHIC (open access)

Recent Triplet Vibration Studies in RHIC

We report on recent developments for mitigating vibrations of the quadrupole magnets near the interaction regions of the Relativistic Heavy Ion Collider (RHIC). High precision accelerometers, geophones, and a laser vibrometer were installed around one of the two interaction points to characterize the frequencies of the mechanical motion. In addition actuators were mounted directly on the quadrupole cryostats. Using as input the locally measured motion, dynamic damping of the mechanical vibrations has been demonstrated. In this report we present these measurements and measurements of the beam response. Future options for compensating the vibrations are discussed.
Date: May 23, 2010
Creator: Thieberger, P.; Bonati, R.; Corbin, G.; Jain, A.; Minty, M.; McIntyre, G. et al.
Object Type: Article
System: The UNT Digital Library
Versatile device for in-situ discharge cleaning and multiple coatings of long, small diameter tubes (open access)

Versatile device for in-situ discharge cleaning and multiple coatings of long, small diameter tubes

Electron clouds, which can limit machine performance, have been observed in many accelerators including RHIC at BNL. Additional concern for the RHIC machine, whose vacuum chamber is made from relatively high resistivity 316LN stainless steel, is high wall resistivity that can result in unacceptably high ohmic heating for superconducting magnets. The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a TiN or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We have been developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprising of staged magnetrons mounted on a mobile mole for deposition of about 5 ?m of Cu followed by about 0.1 ?m of a-C. As a first step, a 15-cm Cu cathode magnetron was designed, fabricated, and 30-cm long samples of the RHIC pipe have been coated with 2 ?m to 5.6 ?m of copper. Deposition rates of up to 92 A/sec with an average coating rate of 30 A/sec were measured. Effects on RF resistivity is also to be measured.
Date: May 23, 2010
Creator: Hershcovitch, A.; Blaskiewicz, M.; Brennan, J. M.; Custer, A.; Erickson, M.; Liaw, C. J. et al.
Object Type: Article
System: The UNT Digital Library
Global Orbit Feedback in RHIC (open access)

Global Orbit Feedback in RHIC

For improved reproducibility of good operating conditions and ramp commissioning efficiency, new dual-plane slow orbit feedback during the energy ramp was implemented during run-10 in the Relativistic Heavy Ion Collider (RHIC). The orbit feedback is based on steering the measured orbit, after subtraction of the dispersive component, to either a design orbit or to a previously saved reference orbit. Using multiple correctors and beam position monitors, an SVD-based algorithm is used for determination of the applied corrections. The online model is used as a basis for matrix computations. In this report we describe the feedback design, review the changes made to realize its implementation, and assess system performance.
Date: May 23, 2010
Creator: Minty, M.; Hulsart, R.; Marusic, A.; Michnoff, R.; Ptitsyn, V.; Robert-Demolaize, G. et al.
Object Type: Article
System: The UNT Digital Library
A simple model based magnet sorting algorithm for planar hybrid undulators (open access)

A simple model based magnet sorting algorithm for planar hybrid undulators

Various magnet sorting strategies have been used to optimize undulator performance, ranging from intuitive pairing of high- and low-strength magnets, to full 3D FEM simulation with 3-axis Helmholtz coil magnet data. In the extreme, swapping magnets in a full field model to minimize trajectory wander and rms phase error can be time consuming. This paper presents a simpler approach, extending the field error signature concept to obtain trajectory displacement, kick angle and phase error signatures for each component of magnetization error from a Radia model of a short hybrid-PM undulator. We demonstrate that steering errors and phase errors are essentially decoupled and scalable from measured X, Y and Z components of magnetization. Then, for any given sequence of magnets, rms trajectory and phase errors are obtained from simple cumulative sums of the scaled displacements and phase errors. The cost function (a weighted sum of these errors) is then minimized by swapping magnets, using one's favorite optimization algorithm. This approach was applied recently at NSLS to a short in-vacuum undulator, which required no subsequent trajectory or phase shimming. Trajectory and phase signatures are also obtained for some mechanical errors, to guide 'virtual shimming' and specifying mechanical tolerances. Some simple inhomogeneities are …
Date: May 23, 2010
Creator: Rakowsky, G.
Object Type: Article
System: The UNT Digital Library
Progress in studies of Electron-Cloud-Induced Optics Distortions at CESRTA (open access)

Progress in studies of Electron-Cloud-Induced Optics Distortions at CESRTA

The Cornell Electron Storage Ring Test Accelerator (CesrTA) program has included extensive measurements of coherent betatron tune shifts for a variety of electron and positron beam energies, bunch population levels, and bunch train configurations. The tune shifts have been shown to result primarily from the interaction of the beam with the space-charge field of the beam-induced lowenergy electron cloud in the vacuum chamber. Comparison to several advanced electron cloud simulation program packages has allowed determination of the sensitivity of these measurements to physical parameters characterizing the synchrotron radiation flux, the production of photoelectrons on the vacuum chamberwall, the beam emittance, lattice optics,and the secondary-electron yield model. We report on progress in understanding the cloud buildup and decay mechanisms in magnetic fields and in field-free regions, addressing quantitatively the precise determination of the physical parameters of the modeling. Validation of these models will serve as essential input in the design of damping rings for future high-energy linear colliders.
Date: May 23, 2010
Creator: Crittenden, J. A.; Calvey, J. R.; Dugan, G. F.; Kreinick, D. L.; Leong, Z.; Livezey, J. A. et al.
Object Type: Article
System: The UNT Digital Library
Recommendation for the Feasibility of more Compact LC Damping Rings (open access)

Recommendation for the Feasibility of more Compact LC Damping Rings

As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of a shorter damping ring with respect to the electron cloud build-up and related beam instability. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 [1] and would allow to considerably reduce the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigations and the integration of the CesrTA results into the Damping Ring design.
Date: May 23, 2010
Creator: Pivi, M. T. F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Fukuma, H. et al.
Object Type: Article
System: The UNT Digital Library
Study of beam-beam effects in eRHIC (open access)

Study of beam-beam effects in eRHIC

Beam-beam effects in eRHIC have a number of unique features, which distinguish them from both hadron and lepton colliders. Due to beam-beam interaction, both electron and hadron beams would suffer quality degradation or beam loss from without proper treatments. Those features need novel study and dedicate countermeasures. We study the beam dynamics and resulting luminosity of the characteristics, including mismatch, disruption and pinch effects on electron beam, in additional to their consequences on the opposing beam as a wake field and other incoherent effects of hadron beam. We also carry out countermeasures to prevent beam quality degrade and coherent instability.
Date: May 23, 2010
Creator: Hao, Y.; Litvinenko, V. & Ptitsyn, V.
Object Type: Article
System: The UNT Digital Library
Interaction region design for the electron-nucleon collider ENC at FAIR (open access)

Interaction region design for the electron-nucleon collider ENC at FAIR

To facilitate studies of collisions between polarized electron and protons at {radical}s = 14 GeV; constructing an electron-nucleon collider at the FAIR facility has been proposed. This machine would collide the stored 15 GeV polarized proton beam in the HESR with a polarized 3.3 GeV electron beam circulating in an additional storage ring. We describe the interaction region design of this facility, which utilizes the PANDA detector.
Date: May 23, 2010
Creator: Montag, C.; Jankowiak, A. & Lehrach, A.
Object Type: Article
System: The UNT Digital Library
Microbunching and RF Compression (open access)

Microbunching and RF Compression

Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.
Date: May 23, 2010
Creator: Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M. & Vaccarezza, C.
Object Type: Article
System: The UNT Digital Library
Angular distribution of laser ablation plasma (open access)

Angular distribution of laser ablation plasma

An expansion of a laser induced plasma is fundamental and important phenomena in a laser ion source. To understand the expanding direction, an array of Langmuir probes were employed. The chosen ion for the experiment was Ag{sup 1+} which was created by a second harmonics of a Nd-YAG laser. The obtained angular distribution was about {+-}10 degree. This result also indicates a proper positioning of a solenoid magnet which enhances ion beam current.
Date: May 23, 2010
Creator: Kondo, K.; Kanesue, T.; Dabrowski, R. & Okamura, M.
Object Type: Article
System: The UNT Digital Library
Muon acceleration with RLA and non-scaling FFAG ARCS (open access)

Muon acceleration with RLA and non-scaling FFAG ARCS

Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.
Date: May 23, 2010
Creator: Morozov, V.S.; Trbojevic, D. & Bogacz, A.
Object Type: Article
System: The UNT Digital Library
Bunch Length Effects in the Beam-Beam Compensation With an Electron Lens (open access)

Bunch Length Effects in the Beam-Beam Compensation With an Electron Lens

N/A
Date: May 23, 2010
Creator: Fischer, W.
Object Type: Article
System: The UNT Digital Library
Chromaticity Feedback at RHIC (open access)

Chromaticity Feedback at RHIC

Chromaticity feedback during the ramp to high beam energies has been demonstrated in the Relativistic Heavy Ion Collider (RHIC). In this report we review the feedback design and measurement technique. Commissioning experiences including interaction with existing tune and coupling feedback are presented together with supporting experimental data.
Date: May 23, 2010
Creator: Marusic, A.; Minty, M. & Tepikian, S.
Object Type: Article
System: The UNT Digital Library
CesrTA Retarding Field Analyzer Modeling Results (open access)

CesrTA Retarding Field Analyzer Modeling Results

Retarding field analyzers (RFAs) provide an effective measure of the local electron cloud density and energy distribution. Proper interpretation of RFA data can yield information about the behavior of the cloud, as well as the surface properties of the instrumented vacuum chamber. However, due to the complex interaction of the cloud with the RFA itself, understanding these measurements can be nontrivial. This paper examines different methods for interpreting RFA data via cloud simulation programs. Techniques include postprocessing the output of a simulation code to predict the RFA response; and incorporating an RFA model into the cloud modeling program itself.
Date: May 23, 2010
Creator: Calvey, J. R.; Celata, C. M.; Crittenden, J. A.; Dugan, G. F.; Greenwald, S.; Leong, Z. et al.
Object Type: Article
System: The UNT Digital Library