States

119 Matching Results

Results open in a new window/tab.

Reducing the losses of optical metamaterials (open access)

Reducing the losses of optical metamaterials

The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, {var_epsilon}. So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. …
Date: December 15, 2010
Creator: Fang, Anan
System: The UNT Digital Library
Developing new optical imaging techniques for single particle and molecule tracking in live cells (open access)

Developing new optical imaging techniques for single particle and molecule tracking in live cells

Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different …
Date: December 15, 2010
Creator: Sun, Wei
System: The UNT Digital Library
Dark matter limits froma 15 kg windowless bubble chamber (open access)

Dark matter limits froma 15 kg windowless bubble chamber

The COUPP collaboration has successfully used bubble chambers, a technology previously applied only to high-energy physics experiments, as direct dark matter detectors. It has produced the world's most stringent spin-dependent WIMP limits, and increasingly competitive spin-independent limits. These limits were achieved by capitalizing on an intrinsic rejection of the gamma background that all other direct detection experiments must address through high-density shielding and empirically-determined data cuts. The history of COUPP, including its earliest prototypes and latest results, is briefly discussed in this thesis. The feasibility of a new, windowless bubble chamber concept simpler and more inexpensive in design is discussed here as well. The dark matter limits achieved with a 15 kg windowless chamber, larger than any previous COUPP chamber (2 kg, 4 kg), are presented. Evidence of the greater radiopurity of synthetic quartz compared to natural is presented using the data from this 15 kg device, the first chamber to be made from synthetic quartz. The effective reconstruction of the three-dimensional positions of bubbles in a highly distorted optical field, with ninety-degree bottom lighting similar to cloud chamber lighting, is demonstrated. Another innovation described in this thesis is the use of the sound produced by bubbles recorded by an …
Date: December 1, 2010
Creator: Szydagis, Matthew Mark
System: The UNT Digital Library
Search for associated production of z and Higgs bosons in proton-antiproton collisions at 1.96 TeV (open access)

Search for associated production of z and Higgs bosons in proton-antiproton collisions at 1.96 TeV

We present a search for associated production of Z and Higgs bosons in 4.2 fb{sup -1} of {bar p}p collisions at {radical}s = 1.96 TeV, produced in RunII of the Tevatron and recorded by the D0 detector. The search is performed in events containing at least two muons and at least two jets. The ZH signal is distinguished from the expected backgrounds by means of multivariate classifiers known as random forests. Binned random forest output distributions are used in comparing the data to background-only and signal+background hypotheses. No excess is observed in the data, so we set upper limits on ZH production with a 95% confidence level.
Date: December 1, 2010
Creator: BackusMayes, John Alexander & /Washington U., Seattle
System: The UNT Digital Library
Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections (open access)

Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections

Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the efforts of physics experiment. As neutrino oscillation searches seek an increasingly elusive signal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understanding. Searches for {nu}{sub {mu}} {yields} {nu}{sub e} oscillation - a channel that may yield insight into the vanishingly small mixing parameter {theta}{sub 13}, CP violation, and the neutrino mass hierarchy - are particularly susceptible to contamination from neutral current single {pi}{sup 0} (NC 1{pi}{sup 0}) production. Unfortunately, the available data concerning NC 1{pi}{sup 0} production are limited in scope and statistics. Without satisfactory constraints, theoretical models of NC 1{pi}{sup 0} production yield substantially differing predictions in the critical E{sub {nu}} {approx} 1 GeV regime. Additional investigation of this interaction can ameliorate the current deficiencies. The Mini Booster Neutrino Experiment (MiniBooNE) is a short-baseline neutrino oscillation search operating at the Fermi National Accelerator Laboratory (Fermilab). While the oscillation search is the principal charge of the MiniBooNE collaboration, the extensive data ({approx} 10{sup 6} neutrino events) offer a rich resource with which to conduct neutrino cross section measurements. This work concerns …
Date: December 1, 2010
Creator: Anderson, Colin & U., /Yale
System: The UNT Digital Library
Magnetic nanoparticles for applications in oscillating magnetic field (open access)

Magnetic nanoparticles for applications in oscillating magnetic field

Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series …
Date: December 15, 2010
Creator: Peeraphatdit, Chorthip
System: The UNT Digital Library
Dislocation dynamics simulations of plasticity at small scales (open access)

Dislocation dynamics simulations of plasticity at small scales

As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results …
Date: December 15, 2010
Creator: Zhou, Caizhi
System: The UNT Digital Library
Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors (open access)

Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} (Tl2201) T{sub c,max} {approx} 95 K and (Bi{sub 1.35}Pb{sub 0.85})(Sr{sub 1.47}La{sub 0.38})CuO{sub 6+{delta}} (Bi2201) T{sub c,max} {approx} 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to ({pi},0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher T{sub c} Tl2201. The second study looks at the different ways of doping Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the …
Date: December 15, 2010
Creator: Palczewski, Ari Deibert
System: The UNT Digital Library
Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal (open access)

Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of …
Date: December 15, 2010
Creator: Jing, Dapeng
System: The UNT Digital Library
Input/Output of ab-initio nuclear structure calculations for improved performance and portability (open access)

Input/Output of ab-initio nuclear structure calculations for improved performance and portability

Many modern scientific applications rely on highly computation intensive calculations. However, most applications do not concentrate as much on the role that input/output operations can play for improved performance and portability. Parallelizing input/output operations of large files can significantly improve the performance of parallel applications where sequential I/O is a bottleneck. A proper choice of I/O library also offers a scope for making input/output operations portable across different architectures. Thus, use of parallel I/O libraries for organizing I/O of large data files offers great scope in improving performance and portability of applications. In particular, sequential I/O has been identified as a bottleneck for the highly scalable MFDn (Many Fermion Dynamics for nuclear structure) code performing ab-initio nuclear structure calculations. We develop interfaces and parallel I/O procedures to use a well-known parallel I/O library in MFDn. As a result, we gain efficient I/O of large datasets along with their portability and ease of use in the down-stream processing. Even situations where the amount of data to be written is not huge, proper use of input/output operations can boost the performance of scientific applications. Application checkpointing offers enormous performance improvement and flexibility by doing a negligible amount of I/O to disk. Checkpointing …
Date: December 15, 2010
Creator: Laghave, Nikhil
System: The UNT Digital Library
Devitrification kinetics and phase selection mechanisms in Cu-Zr metallic glasses (open access)

Devitrification kinetics and phase selection mechanisms in Cu-Zr metallic glasses

Metallic glasses have been a promising class of materials since their discovery in the 1960s. Indeed, remarkable chemical, mechanical and physical properties have attracted considerable attention, and several excellent reviews are available. Moreover, the special group of glass forming alloys known as the bulk metallic glasses (BMG) become amorphous solids even at relatively low cooling rates, allowing them to be cast in large cross sections, opening the scope of potential applications to include bulk forms and net shape structural applications. Recent studies have been reported for new bulk metallic glasses produced with lower cooling rates, from 0.1 to several hundred K/s. Some of the application products of BMGs include sporting goods, high performance springs and medical devices. Several rapid solidification techniques, including melt-spinning, atomization and surface melting have been developed to produce amorphous alloys. The aim of all these methods is to solidify the liquid phase rapidly enough to suppress the nucleation and growth of crystalline phases. Furthermore, the production of amorphous/crystalline composite (ACC) materials by partial crystallization of amorphous precursor has recently given rise to materials that provide better mechanical and magnetic properties than the monolithic amorphous or crystalline alloys. In addition, these advances illustrate the broad untapped potential …
Date: December 15, 2010
Creator: Kalay, Ilkay
System: The UNT Digital Library
Extending the frontiers of mass spectrometric instrumentation and methods (open access)

Extending the frontiers of mass spectrometric instrumentation and methods

The focus of this dissertation is two-fold: developing novel analysis methods using mass spectrometry and the implementation and characterization of a novel ion mobility mass spectrometry instrumentation. The novel mass spectrometry combines ion trap for ion/ion reactions coupled to an ion mobility cell. The long term goal of this instrumentation is to use ion/ion reactions to probe the structure of gas phase biomolecule ions. The three ion source - ion trap - ion mobility - qTOF mass spectrometer (IT - IM - TOF MS) instrument is described. The analysis of the degradation products in coal (Chapter 2) and the imaging plant metabolites (Appendix III) fall under the methods development category. These projects use existing commercial instrumentation (JEOL AccuTOF MS and Thermo Finnigan LCQ IT, respectively) for the mass analysis of the degraded coal products and the plant metabolites, respectively. The coal degradation paper discusses the use of the DART ion source for fast and easy sample analysis. The sample preparation consisted of a simple 50 fold dilution of the soluble coal products in water and placing the liquid in front of the heated gas stream. This is the first time the DART ion source has been used for analysis of …
Date: December 15, 2010
Creator: Schieffer, Gregg
System: The UNT Digital Library
Measurement of ww + wz production cross section and study of the dijet mass spectrum in the lnu + jets final state at CDF (open access)

Measurement of ww + wz production cross section and study of the dijet mass spectrum in the lnu + jets final state at CDF

We present the measurement of the WW and WZ production cross section in p{bar p} collisions at {radical}s = 1.96 TeV, in a final state consisting of an electron or muon, neutrino and jets. The data analyzed were collected by the CDF II detector at the Tevatron collider and correspond to 4.3 fb{sup -1} of integrated luminosity. The analysis uses a fit to the dijet mass distribution to extract the diboson contribution. We observe 1582 {+-} 275(stat.) {+-} 107(syst.) diboson candidate events and measure a cross section of {sigma}{sub WW/WZ} = 18.1 {+-} 3.3(stat.) {+-} 2.5(syst.) pb, consistent with the Standard Model prediction of 15.9 {+-} 0.9 pb. The best fit to the dijet mass of the known components shows a good agreement with the data except for the [120, 160] GeV/c{sup 2} mass range, where an excess is observed. We perform detailed checks of our background model and study the significance of the excess, assuming an additional gaussian component with a width compatible with the expected dijet mass resolution. A standard {Delta}{sub {chi}}{sup 2} test of the presence of the additional component, returns a p-value of 4.2 x 10{sup -4} when standard sources of systematics are considered, corresponding to …
Date: December 1, 2010
Creator: Cavaliere, Viviana & U., /Siena
System: The UNT Digital Library
Measurement and simulations of intensity-dependent effects in the Fermilab Booster Synchrotron (open access)

Measurement and simulations of intensity-dependent effects in the Fermilab Booster Synchrotron

The Fermilab Booster is a nearly 40-year-old proton synchrotron, designed to accelerate injected protons from a kinetic energy of 400 MeV to 8 GeV for extraction into the Main Injector and ultimately the Tevatron. Currently the Booster is operated with a typical intensity of 4.5 x 10{sup 12} particles per beam, roughly twice the value of its design, because of the requirement for high particle flux in various experiments. Its relatively low injection energy provides certain challenges in maintaining beam quality and stability under these increasing intensity demands. An understanding of the effects limiting this intensity could provide enhanced beam stability and reduced downtime due to particle losses and subsequent damage to the accelerator elements. Design of future accelerators can also benefit from a better understanding of intensity effects limiting injection dynamics. Chapter 1 provides a summary of accelerator research during the 20th century leading to the development of the modern synchrotron. Chapter 2 puts forth a working knowledge of the terminology and basic theory used in accelerator physics, and provides a brief description of the Fermilab Booster synchrotron. Synergia, a 3d space-charge modeling framework, is presented, along with some simulation benchmarks relevant to topics herein. Emittance, a commonly used …
Date: December 1, 2010
Creator: McCarron, Daniel O.
System: The UNT Digital Library
Microstructures and oxidation behavior of some Molybdenum based alloys (open access)

Microstructures and oxidation behavior of some Molybdenum based alloys

The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It …
Date: December 15, 2010
Creator: Ray, Pratik Kumar
System: The UNT Digital Library
Chirped-Pulse Fourier Transform Microwave Spectroscopy of Fluoroiodoacetonitrile and Chloropentafluoroacetone (open access)

Chirped-Pulse Fourier Transform Microwave Spectroscopy of Fluoroiodoacetonitrile and Chloropentafluoroacetone

This work focuses on finding the complete iodine and nitrogen nuclear electric quadrupole coupling tensors for fluoroiodoacetonitrile using chirped-pulse Fourier transform microwave spectroscopy. Fluoroiodoacetonitrile contains two hyperfine nuclei, iodine (I=5/2) and nitrogen (I=1) and the spectra were observed with great resolution. A total of 499 transitions were observed for this molecule. The a, b and c rotational constants were obtained. A study of chloropentafluoroacetone was also done using chirped-pulse Fourier transform microwave spectroscopy. The two chlorine isotopes for this molecule, Cl-35 and Cl-37 were observed and 326 and 170 transitions were recorded, respectively.
Date: December 2010
Creator: Kadiwar, Gautam
System: The UNT Digital Library
Surface Chemical Deposition of Advanced Electronic Materials (open access)

Surface Chemical Deposition of Advanced Electronic Materials

The focus of this work was to examine the direct plating of Cu on Ru diffusion barriers for use in interconnect technology and the substrate mediated growth of graphene on boron nitride for use in advanced electronic applications. The electrodeposition of Cu on Ru(0001) and polycrystalline substrates (with and without pretreatment in an iodine containing solution) has been studied by cyclic voltammetry (CV), current-time transient measurements (CTT), in situ electrochemical atomic force microscopy (EC-AFM), and X-ray photoelectron spectroscopy (XPS). The EC-AFM data show that at potentials near the OPD/UPD threshold, Cu crystallites exhibit pronounced growth anisotropy, with lateral dimensions greatly exceeding vertical dimensions. XPS measurements confirmed the presence and stability of adsorbed I on the Ru surface following pre-treatment in a KI/H2SO4 solution and following polarization to at least −200 mV vs. Ag/AgCl. CV data of samples pre-reduced in I-containing electrolyte exhibited a narrow Cu deposition peak in the overpotential region and a UPD peak. The kinetics of the electrodeposited Cu films was investigated by CTT measurements and applied to theoretical models of nucleation. The data indicated that a protective I adlayer may be deposited on an air-exposed Ru electrode as the oxide surface is electrochemically reduced, and that this …
Date: December 2010
Creator: Bjelkevig, Cameron
System: The UNT Digital Library
Exploring Process-Variation Tolerant Design of Nanoscale Sense Amplifier Circuits (open access)

Exploring Process-Variation Tolerant Design of Nanoscale Sense Amplifier Circuits

Sense amplifiers are important circuit components of a dynamic random access memory (DRAM), which forms the main memory of digital computers. The ability of the sense amplifier to detect and amplify voltage signals to correctly interpret data in DRAM cells cannot be understated. The sense amplifier plays a significant role in the overall speed of the DRAM. Sense amplifiers require matched transistors for optimal performance. Hence, the effects of mismatch through process variations must be minimized. This thesis presents a research which leads to optimal nanoscale CMOS sense amplifiers by incorporating the effects of process variation early in the design process. The effects of process variation on the performance of a standard voltage sense amplifier, which is used in conventional DRAMs, is studied. Parametric analysis is performed through circuit simulations to investigate which parameters have the most impact on the performance of the sense amplifier. The figures-of-merit (FoMs) used to characterize the circuit are the precharge time, power dissipation, sense delay and sense margin. Statistical analysis is also performed to study the impact of process variations on each FoM. By analyzing the results from the statistical study, a method is presented to select parameter values that minimize the effects of …
Date: December 2010
Creator: Okobiah, Oghenekarho
System: The UNT Digital Library
Process-Voltage-Temperature Aware Nanoscale Circuit Optimization (open access)

Process-Voltage-Temperature Aware Nanoscale Circuit Optimization

Embedded systems which are targeted towards portable applications are required to have low power consumption because such portable devices are typically powered by batteries. During the memory accesses of such battery operated portable systems, including laptops, cell phones and other devices, a significant amount of power or energy is consumed which significantly affects the battery life. Therefore, efficient and leakage power saving cache designs are needed for longer operation of battery powered applications. Design engineers have limited control over many design parameters of the circuit and hence face many chal-lenges due to inherent process technology variations, particularly on static random access memory (SRAM) circuit design. As CMOS process technologies scale down deeper into the nanometer regime, the push for high performance and reliable systems becomes even more challenging. As a result, developing low-power designs while maintaining better performance of the circuit becomes a very difficult task. Furthermore, a major need for accurate analysis and optimization of various forms of total power dissipation and performance in nanoscale CMOS technologies, particularly in SRAMs, is another critical issue to be considered. This dissertation proposes power-leakage and static noise margin (SNM) analysis and methodologies to achieve optimized static random access memories (SRAMs). Alternate topologies …
Date: December 2010
Creator: Thakral, Garima
System: The UNT Digital Library
Standing Up to Experts: The Politics of Public Education (open access)

Standing Up to Experts: The Politics of Public Education

In a small room in Austin, Texas, a group of 15 people are single-handedly deciding what is taught to the next generation of American children. The highly politicized 15 member Texas Board of Education is currently going through the once-in-a-decade process of rewriting the teaching and textbook standards for its nearly 5 million schoolchildren. Texas is also unbelievably influential on the standards that textbook publishers use as a basis for their textbooks nationwide. Over the last 10 years, the textbooks adopted by this board found their way in upwards of 65% of American classrooms. My goal is to shed light on this important issue and the key players in this process - I explain their goals, explore the scope of their influence, and delve into the personal motivations behind their actions, which will affect public education throughout the country.
Date: December 2010
Creator: Thurman, Scott
System: The UNT Digital Library
Graph-Based Keyphrase Extraction Using Wikipedia (open access)

Graph-Based Keyphrase Extraction Using Wikipedia

Keyphrases describe a document in a coherent and simple way, giving the prospective reader a way to quickly determine whether the document satisfies their information needs. The pervasion of huge amount of information on Web, with only a small amount of documents have keyphrases extracted, there is a definite need to discover automatic keyphrase extraction systems. Typically, a document written by human develops around one or more general concepts or sub-concepts. These concepts or sub-concepts should be structured and semantically related with each other, so that they can form the meaningful representation of a document. Considering the fact, the phrases or concepts in a document are related to each other, a new approach for keyphrase extraction is introduced that exploits the semantic relations in the document. For measuring the semantic relations between concepts or sub-concepts in the document, I present a comprehensive study aimed at using collaboratively constructed semantic resources like Wikipedia and its link structure. In particular, I introduce a graph-based keyphrase extraction system that exploits the semantic relations in the document and features such as term frequency. I evaluated the proposed system using novel measures and the results obtained compare favorably with previously published results on established benchmarks.
Date: December 2010
Creator: Dandala, Bharath
System: The UNT Digital Library
A-Bu-GE: A Composition for Organ and Percussion (open access)

A-Bu-GE: A Composition for Organ and Percussion

Keyphrases describe a document in a coherent and simple way, giving the prospective reader a way to quickly determine whether the document satisfies their information needs. The pervasion of huge amount of information on Web, with only a small amount of documents have keyphrases extracted, there is a definite need to discover automatic keyphrase extraction systems. Typically, a document written by human develops around one or more general concepts or sub-concepts. These concepts or sub-concepts should be structured and semantically related with each other, so that they can form the meaningful representation of a document. Considering the fact, the phrases or concepts in a document are related to each other, a new approach for keyphrase extraction is introduced that exploits the semantic relations in the document. For measuring the semantic relations between concepts or sub-concepts in the document, I present a comprehensive study aimed at using collaboratively constructed semantic resources like Wikipedia and its link structure. In particular, I introduce a graph-based keyphrase extraction system that exploits the semantic relations in the document and features such as term frequency. I evaluated the proposed system using novel measures and the results obtained compare favorably with previously published results on established benchmarks.
Date: December 2010
Creator: Kim, Chol-Ho
System: The UNT Digital Library
Museum education: Creation, implementation, and evaluation of a web-based Elm Fork Natural Heritage Museum (open access)

Museum education: Creation, implementation, and evaluation of a web-based Elm Fork Natural Heritage Museum

Evaluation of museum audiences both in their physical and web-based spaces is a necessary component of museum education. For smaller museums without the personnel or knowledge to create a website and evaluate the on-line audience, using a web-based learning tool may be able to help these museums properly maintain an online site. A web-based Elm Fork Natural Heritage Museum (WBEFNHM) was created during the 2008 fall semester at the University of North Texas. The site included photographs and information from specimens housed within the physical Elm Fork Natural Heritage Museum. The site was available to three non-science majors' biology laboratory courses, and three science majors' biology laboratory courses during the 2009 spring and fall semesters. Student use of the WBEFNHM was tracked and found no significant difference between the amount of time science majors and non-majors spent on the site. This evaluation helps in understanding future use of an online EFNHM.
Date: December 2010
Creator: Lundeen, Melissa
System: The UNT Digital Library
Examination and Development of the Correlation Consistent Composite Approach (open access)

Examination and Development of the Correlation Consistent Composite Approach

The primary focus of this dissertation is the advancement of the correlation consistent composite approach (ccCA) methodology from its original formulation to the current implementation. Although for large main group test sets which contained both first- (Li-Ne) and second-row (Na-Ar) species ccCA produced chemical accuracy (generally estimated as a deviation of ~1 kcal mol-1 from reliable experiment), the second-row species were smaller in molecular size in comparison to their corresponding first-row species. Previous theoretical work has shown that the accuracy for theoretical calculations involving second-row species (specifically sulfur-containing species) are more basis set dependent than first-row species. Therefore, an analysis of the accuracy of ccCA for sulfur-containing species is warranted. The ccCA methodology is used to evaluate both enthalpies of formation and bond dissociation energies of sulfur-containing species as well as examine isomerization energies for three sets of sulfur-containing isomers. During the testing of ccCA for sulfur-containing species two observations were made which led to further investigations. First, there is no agreement between different theoretical methodologies on the lowest energetic isomer between SNO and NSO. In fact, G3 and G3B3 which differ only by the geometry of the single-point calculations do not agree on the lowest isomer. For this reason, …
Date: December 2010
Creator: Williams, T. Gavin
System: The UNT Digital Library