Resource Type

367 Matching Results

Results open in a new window/tab.

[5,10,15,20-Tetrakis(4-tolyl)porphyrin]-zinc(II) dichloromethane solvate (open access)

[5,10,15,20-Tetrakis(4-tolyl)porphyrin]-zinc(II) dichloromethane solvate

In the title complex, [Zn(C₄₈H₃₆N₄)]·CH₂Cl₂, the Znᴵᴵ atom lies on an inversion center and the dichloromethane solvent molecule is disordered around an inversion center.
Date: May 26, 2010
Creator: McGill, Sean; Nesterov, Vladimir N. & Gould, Stephanie L.
System: The UNT Digital Library
80 and 100 Meter Wind Energy Resource Potential for the United States (Poster) (open access)

80 and 100 Meter Wind Energy Resource Potential for the United States (Poster)

Accurate information about the wind potential in each state is required for federal and state policy initiatives that will expand the use of wind energy in the United States. The National Renewable Energy Laboratory (NREL) and AWS Truewind have collaborated to produce the first comprehensive new state-level assessment of wind resource potential since 1993. The estimates are based on high-resolution maps of predicted mean annual wind speeds for the contiguous 48 states developed by AWS Truewind. These maps, at spatial resolution of 200 meters and heights of 60 to 100 meters, were created with a mesoscale-microscale modeling technique and adjusted to reduce errors through a bias-correction procedure involving data from more than 1,000 measurement masts. NREL used the capacity factor maps to estimate the wind energy potential capacity in megawatts for each state by capacity factor ranges. The purpose of this presentation is to (1) inform state and federal policy makers, regulators, developers, and other stakeholders on the availability of the new wind potential information that may influence development, (2) inform the audience of how the new information was derived, and (3) educate the audience on how the information should be interpreted in developing state and federal policy initiatives.
Date: May 1, 2010
Creator: Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Flowers, L. et al.
System: The UNT Digital Library
120-mm superconducting quadrupole for interaction regions of hadron colliders (open access)

120-mm superconducting quadrupole for interaction regions of hadron colliders

Magnetic and mechanical designs of a Nb{sub 3}Sn quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a low-Z material are implemented in the coil mid-planes to reduce the level of radiation heat deposition and radiation dose in the coil. The quadrupole mechanical structure is based on aluminum collars supported by an iron yoke and a stainless steel skin. Magnet parameters including maximum field gradient and field harmonics, Nb3Sn coil pre-stress and protection at the operating temperatures of 4.5 and 1.9 K are reported. The level and distribution of radiation heat deposition in the coil and other magnet components are discussed.
Date: May 1, 2010
Creator: Zlobin, A. V.; Kashikhin, V.V.; Mokhov, N. V. & Novitski, I.
System: The UNT Digital Library
500 MW X-BAND RF SYSTEM OF A 0.25 GEV ELECTRON LINAC FOR ADVANCED COMPTON SCATTERING SOURCE APPLICATION (open access)

500 MW X-BAND RF SYSTEM OF A 0.25 GEV ELECTRON LINAC FOR ADVANCED COMPTON SCATTERING SOURCE APPLICATION

A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high …
Date: May 12, 2010
Creator: Chu, T S; Anderson, S G; Gibson, D J; Hartemann, F V; Marsh, R A; Siders, C et al.
System: The UNT Digital Library
4w Thomson Scattering Probe for High-density Measurements at Titan (open access)

4w Thomson Scattering Probe for High-density Measurements at Titan

None
Date: May 10, 2010
Creator: Ross, J. S.; Kline, J. L.; Yang, S.; Henesian, M.; Weiland, T.; Price, D. et al.
System: The UNT Digital Library
Accelerator neutrino program at Fermilab (open access)

Accelerator neutrino program at Fermilab

The accelerator neutrino programme in the USA consists primarily of the Fermilab neutrino programme. Currently, Fermilab operates two neutrino beamlines, the Booster neutrino beamline and the NuMI neutrino beamline and is the planning stages for a third neutrino beam to send neutrinos to DUSEL. The experiments in the Booster neutrino beamline are miniBooNE, SciBooNE and in the future microBooNE, whereas in the NuMI beamline we have MINOS, ArgoNut, MINERVA and coming soon NOvA. The major experiment in the beamline to DUSEL will be LBNE.
Date: May 1, 2010
Creator: Parke, Stephen J.
System: The UNT Digital Library
Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL (open access)

Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

Precision simulations of the electron cloud at the Fermilab Main Injector have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes E.M. field maps generated by the cloud and the proton bunches have been obtained, as well detailed distributions of the electron's 6D phase space. We plan to include such maps in the ongoing simulation of the space charge effects in the Main Injector. Simulations of the response of beam position monitors, retarding field analyzers and microwave transmission experiments are ongoing.
Date: May 1, 2010
Creator: Lebrun, Paul L.G.; Spentzouris, Panagiotis; Cary, John R.; Stoltz, Peter & Veitzer, Seth A.
System: The UNT Digital Library
ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS (open access)

ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS

In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.
Date: May 12, 2010
Creator: Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J et al.
System: The UNT Digital Library
Aerosol-Assisted Solid Debris Collection for the National Ignition Facility (open access)

Aerosol-Assisted Solid Debris Collection for the National Ignition Facility

The National Ignition Facility (NIF) has been completed and has made its first shots on-target. While upcoming experiments will be focused on achieving ignition, a variety of subsequent experiments are planned for the facility, including measurement of cross sections, astrophysical measurements, and investigation of hydrodynamic instability in the target capsule. In order to successfully execute several of these planned experiments, the ability to collect solid debris following a NIF capsule shot will be required. The ability to collect and analyze solid debris generated in a shot at the National Ignition Facility (NIF) will greatly expand the number of nuclear reactions studied for diagnostic purposes. Currently, reactions are limited to only those producing noble gases for cryogenic collection and counting with the Radchem Apparatus for Gas Sampling (RAGS). The radchem solid collection diagnostic has already been identified by NIF to be valuable for the determination and understanding of mix generated in the target capsule's ablation. LLNL is currently developing this solid debris collection capability at NIF, and is in the stage of testing credible designs. Some of these designs explore the use of x-ray generated aerosols to assist in collection of solid debris. However, the variety of harsh experimental conditions this …
Date: May 21, 2010
Creator: Nelson, S. L.; Shaughnessy, D. A.; Moody, K. J.; Ivanov, V. V.; Astanovitskiy, A. L.; Lewis, L. A. et al.
System: The UNT Digital Library
Alternative Muon Front-end for the International Design Study (IDS) (open access)

Alternative Muon Front-end for the International Design Study (IDS)

We discuss alternative designs of the muon capture front end of the Neutrino Factory International Design Study (IDS). In the front end, a proton bunch on a target creates secondary pions that drift into a capture channel, decaying into muons. A sequence of RF cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. This design is affected by limitations on accelerating gradients within magnetic fields. The effects of gradient limitations are explored, and mitigation strategies are presented.
Date: May 1, 2010
Creator: Alekou, A.; Neuffer, D.; Martini, M.; Prior, G.; Rogers, C.; Stratakis, D. et al.
System: The UNT Digital Library
The Analysis of Dimensionality Reduction Techniques in Cryptographic Object Code Classification (open access)

The Analysis of Dimensionality Reduction Techniques in Cryptographic Object Code Classification

This paper compares the application of three different dimension reduction techniques to the problem of locating cryptography in compiled object code. A simple classi?er is used to compare dimension reduction via sorted covariance, principal component analysis, and correlation-based feature subset selection. The analysis concentrates on the classi?cation accuracy as the number of dimensions is increased.
Date: May 1, 2010
Creator: Wright, Jason L. & Manic, Milos
System: The UNT Digital Library
Analysis of the Spectral Function of Nd1.85Ce0.15CuO4, Obtained by Angle Resolved Photoemission Spectroscopy (open access)

Analysis of the Spectral Function of Nd1.85Ce0.15CuO4, Obtained by Angle Resolved Photoemission Spectroscopy

Samples of Nd{sub 2-x}Ce{sub x}CuO{sub 4}, an electron-doped high temperature superconducting cuprate (HTSC), near optimal doping at x = 0.155 were measured via angle resolved photoemission (ARPES). We report a renormalization feature in the self energy ('kink') in the band dispersion at {approx} 50-60 meV present in nodal and antinodal cuts across the Fermi surface. Specifically, while the kink had been seen in the antinodal region, it is now observed also in the nodal region, reminiscent of what has been observed in hole-doped cuprates.
Date: May 3, 2010
Creator: Schmitt, F.
System: The UNT Digital Library
Analytical solution for Joule-Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs (open access)

Analytical solution for Joule-Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs

Mathematical tools are needed to screen out sites where Joule-Thomson cooling is a prohibitive factor for CO{sub 2} geo-sequestration and to design approaches to mitigate the effect. In this paper, a simple analytical solution is developed by invoking steady-state flow and constant thermophysical properties. The analytical solution allows fast evaluation of spatiotemporal temperature fields, resulting from constant-rate CO{sub 2} injection. The applicability of the analytical solution is demonstrated by comparison with non-isothermal simulation results from the reservoir simulator TOUGH2. Analysis confirms that for an injection rate of 3 kg s{sup -1} (0.1 MT yr{sup -1}) into moderately warm (>40 C) and permeable formations (>10{sup -14} m{sup 2} (10 mD)), JTC is unlikely to be a problem for initial reservoir pressures as low as 2 MPa (290 psi).
Date: May 21, 2010
Creator: Mathias, S.A.; Gluyas, J.G.; Oldenburg, C.M. & Tsang, C.-F.
System: The UNT Digital Library
Angle-resolved photoemission studies of lattice polaron formation in the cuprate Ca2CuO2Cl2 (open access)

Angle-resolved photoemission studies of lattice polaron formation in the cuprate Ca2CuO2Cl2

To elucidate the nature of the single-particle excitations in the undoped parent cuprates, we have performed a detailed study of Ca{sub 2}CuO{sub 2}Cl{sub 2} using photoemission spectroscopy. The photoemission lineshapes of the lower Hubbard band are found to be well-described by a polaron model. By comparing the lineshape and temperature dependence of the lower Hubbard band with additional O 2p and Ca 3p states, we conclude that the dominant broadening mechanism arises from the interaction between the photohole and the lattice. The strength of this interaction was observed to be strongly anisotropic and may have important implications for the momentum dependence of the first doped hole states.
Date: May 3, 2010
Creator: Shen, K.M.
System: The UNT Digital Library
Angular distribution of laser ablation plasma (open access)

Angular distribution of laser ablation plasma

An expansion of a laser induced plasma is fundamental and important phenomena in a laser ion source. To understand the expanding direction, an array of Langmuir probes were employed. The chosen ion for the experiment was Ag{sup 1+} which was created by a second harmonics of a Nd-YAG laser. The obtained angular distribution was about {+-}10 degree. This result also indicates a proper positioning of a solenoid magnet which enhances ion beam current.
Date: May 23, 2010
Creator: Kondo, K.; Kanesue, T.; Dabrowski, R. & Okamura, M.
System: The UNT Digital Library
Anomalous Diffusion Near Resonances (open access)

Anomalous Diffusion Near Resonances

Synchro-betatron resonances can lead to emittance growth and the loss of luminosity. We consider the detailed dynamics of a bunch near such a low order resonance driven by crossing angles at the collision points. We characterize the nature of diffusion and find that it is anomalous and sub-diffusive. This affects both the shape of the beam distribution and the time scales for growth. Predictions of a simplified anomalous diffusion model are compared with direct simulations. Transport of particles near resonances is still not a well understood phenomenon. Often, without justification, phase space motion is assumed to be a normal diffusion process although at least one case of anomalous diffusion in beam dynamics has been reported [1]. Here we will focus on the motion near synchro-betatron resonances which can be excited by several means, including beams crossing at an angle at the collision points as in the LHC. We will consider low order resonances which couple the horizontal and longitudinal planes, both for simplicity and to observe large effects over short time scales. While the tunes we consider are not practical for a collider, nonetheless the transport mechanisms we uncover are also likely to operate at higher order resonances.
Date: May 1, 2010
Creator: Sen, Tanaji
System: The UNT Digital Library
Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-Tc Superconductor (open access)

Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-Tc Superconductor

We report the discovery of a self-doped multi-layer high T{sub c} superconductor Ba{sub 2}Ca{sub 3}Cu{sub 4}O{sub 8}F{sub 2} (F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi surface(FS) sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a T{sub c} of 60K, possessing simultaneously both electron- and hole-doped FS sheets. Intriguingly, the FS sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic ({pi}/a, {pi}/a) scattering.
Date: May 3, 2010
Creator: Chen, Y.
System: The UNT Digital Library
Application Acceleration on Current and Future Cray Platforms (open access)

Application Acceleration on Current and Future Cray Platforms

None
Date: May 11, 2010
Creator: Koniges, A.; Preissl, R.; Kim, J.; Eder, D.; Fisher, A.; Masters, N. et al.
System: The UNT Digital Library
Application of a Multiscale Model of Tantalum Deformation at Megabar Pressures (open access)

Application of a Multiscale Model of Tantalum Deformation at Megabar Pressures

A new multiscale simulation tool has been developed to model the strength of tantalum under high-pressure dynamic compression. This new model combines simulations at multiple length scales to explain macroscopic properties of materials. Previously known continuum models of material response under load have built upon a mixture of theoretical physics and experimental phenomenology. Experimental data, typically measured at static pressures, are used as a means of calibration to construct models that parameterize the material properties; e.g., yield stress, work hardening, strain-rate dependence, etc. The pressure dependence for most models enters through the shear modulus, which is used to scale the flow stress. When these models are applied to data taken far outside the calibrated regions of phase space (e.g., strain rate or pressure) they often diverge in their predicted behavior of material deformation. The new multiscale model, developed at Lawrence Livermore National Laboratory, starts with interatomic quantum mechanical potential and is based on the motion and multiplication of dislocations. The basis for the macroscale model is plastic deformation by phonon drag and thermally activated dislocation motion and strain hardening resulting from elastic interactions among dislocations. The dislocation density, {rho}, and dislocation velocity, {nu}, are connected to the plastic strain rate …
Date: May 13, 2010
Creator: Cavallo, R. M.; Park, H.; Barton, N. R.; Remignton, B. A.; Pollaine, S. M.; Prisbrey, S. T. et al.
System: The UNT Digital Library
Applying Human Factors during the SIS Life Cycle (open access)

Applying Human Factors during the SIS Life Cycle

Safety Instrumented Systems (SIS) are widely used in U.S. Department of Energy's (DOE) nonreactor nuclear facilities for safety-critical applications. Although use of the SIS technology and computer-based digital controls, can improve performance and safety, it potentially introduces additional complexities, such as failure modes that are not readily detectable. Either automated actions or manual (operator) actions may be required to complete the safety instrumented function to place the process in a safe state or mitigate a hazard in response to an alarm or indication. DOE will issue a new standard, Application of Safety Instrumented Systems Used at DOE Nonreactor Nuclear Facilities, to provide guidance for the design, procurement, installation, testing, maintenance, operation, and quality assurance of SIS used in safety significant functions at DOE nonreactor nuclear facilities. The DOE standard focuses on utilizing the process industry consensus standard, American National Standards Institute/ International Society of Automation (ANSI/ISA) 84.00.01, Functional Safety: Safety Instrumented Systems for the Process Industry Sector, to support reliable SIS design throughout the DOE complex. SIS design must take into account human-machine interfaces and their limitations and follow good human factors engineering (HFE) practices. HFE encompasses many diverse areas (e.g., information display, user-system interaction, alarm management, operator response, control …
Date: May 5, 2010
Creator: Avery, K.
System: The UNT Digital Library
ASSEMBLY AND TEST OF A 120 MM BORE 15 T NB3SN QUADRUPOLE FOR THE LHC UPGRADE (open access)

ASSEMBLY AND TEST OF A 120 MM BORE 15 T NB3SN QUADRUPOLE FOR THE LHC UPGRADE

In support of the Large Hadron Collider (LHC) luminosity upgrade, the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb{sub 3}Sn IR quadrupole magnet (HQ). With a design short sample gradient of 219 T/m at 1.9 K and a peak field approaching 15 T, one of the main challenges of this magnet is to provide appropriate mechanical support to the coils. Compared to the previous LARP Technology Quadrupole and Long Quadrupole magnets, the purpose of HQ is also to demonstrate accelerator quality features such as alignment and cooling. So far, 8 HQ coils have been fabricated and 4 of them have been assembled and tested in HQ01a. This paper presents the mechanical assembly and test results of HQ01a.
Date: May 23, 2010
Creator: Felice, H.; Caspi, S.; Cheng, D.; Dietderich, D.; Ferracin, P.; Hafalia, R. et al.
System: The UNT Digital Library
Atmospheric Effects on the Performance of Cdznte Single Crystal Detectors (open access)

Atmospheric Effects on the Performance of Cdznte Single Crystal Detectors

The production of high-quality ternary single-crystal materials for radiation detectors has progressed over the past 15 years. One of the more common materials being studied is CdZnTe (CZT), which can be grown using several methods to produce detector-grade materials. The work presented herein examines the effects of environmental conditions including temperature and humidity on detector performance [full-width at half-maximum (FWHM)] using the single pixel with guard detector configuration. The effects of electrical probe placement, reproducibility, and aging are also presented.
Date: May 12, 2010
Creator: Washington, A.; Duff, M. & Teague, L.
System: The UNT Digital Library
Atomic resolution mapping of the excited-state electronic structure of Cu2O with time-resolved x-ray absorption spectroscopy (open access)

Atomic resolution mapping of the excited-state electronic structure of Cu2O with time-resolved x-ray absorption spectroscopy

We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that the conduction-band and valence-band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.
Date: May 2, 2010
Creator: Hillyard, P. W.; Kuchibhatla, S. V. N. T.; Glover, T. E.; Hertlein, M. P.; Huse, Nils; Nachimuthu, P. et al.
System: The UNT Digital Library
AVNG as a Test Case for Cooperative Design (open access)

AVNG as a Test Case for Cooperative Design

Designing a measurement system that might be used in a nuclear facility is a challenging, if not daunting, proposition. The situation is made more complicated when the system needs to be designed to satisfy the disparate requirements of a monitoring and a host party - a relationship that could prove to be adversarial. The cooperative design of the elements of the AVNG (Attribute Verification with Neutrons and Gamma Rays) system served as a crucible that exercised the possible pitfalls in the design and implementation of a measurement system that could be used in a host party nuclear facility that satisfied the constraints of operation for both the host and monitoring parties. Some of the issues that needed to be addressed in the joint design were certification requirements of the host party and the authentication requirements of the monitoring party. In this paper the nature of the problem of cooperative design will be introduced. The details of cooperative design revolve around the idiosyncratic nature of the adversarial relationship between the parties involved in a possible measurement regime, particularly if measurements on items that may contain sensitive information are being pursued. The possibility of an adversarial interaction is more likely if an …
Date: May 21, 2010
Creator: Luke, S J
System: The UNT Digital Library