Resource Type

Month

Language

GyPSuM: A Detailed Tomographic Model of Mantle Density and Seismic Wave Speeds (open access)

GyPSuM: A Detailed Tomographic Model of Mantle Density and Seismic Wave Speeds

GyPSuM is a tomographic model fo mantle seismic shear wave (S) speeds, compressional wave (P) speeds and detailed density anomalies that drive mantle flow. the model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while considering realistic mineral physics parameters linking the relative behavior of mantle properties (wave speeds and density). Geodynamic observations include the (up to degree 16) global free-air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle; but are limited to very long-wavelength solutions. Alternatively, simply scaling higher resolution seismic images to density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides detailed density structures in the mantle while directly satisfying geodynamic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of the superplume structures, supporting the fundamental results of past normal mode …
Date: March 30, 2010
Creator: Simmons, N A; Forte, A M; Boschi, L & Grand, S P
System: The UNT Digital Library
Valence-state Model of Strain-dependent Mn L2,3 X-ray Magnetic Circular Dichroism from Ferromagnetic Semiconductors (open access)

Valence-state Model of Strain-dependent Mn L2,3 X-ray Magnetic Circular Dichroism from Ferromagnetic Semiconductors

We present a valence-state model to explain the characteristics of a recently observed pre-edge feature in Mn L{sub 3} x-ray magnetic circular dichroism (XMCD) of ferromagnetic (Ga,Mn)As and (Al,Ga,Mn)As thin films. The prepeak XMCD shows a uniaxial anisotropy, contrary to the cubic symmetry of the main structures induced by the crystalline electric field. Reversing the strain in the host lattice reverses the sign of the uniaxial anisotropy. With increasing carrier localization, the prepeak height increases, indicating an increasing 3d character of the hybridized holes. Hence, the feature is ascribed to transitions from the Mn 2p core level to unoccupied p-d hybridized valence states. The characteristics of the prepeak are readily reproduced by the model calculation taking into account the symmetry of the strain-, spin-orbit-, and exchange-split valence states around the zone center.
Date: March 30, 2010
Creator: van der Laan, G.; Edmonds, K. W.; Arenholz, E.; Farley, N. R. S. & Gallagher, B. L.
System: The UNT Digital Library
Power scaling analysis of fiber lasers and amplifiers based on non-silica materials (open access)

Power scaling analysis of fiber lasers and amplifiers based on non-silica materials

A developed formalism for analyzing the power scaling of diffraction limited fiber lasers and amplifiers is applied to a wider range of materials. Limits considered include thermal rupture, thermal lensing, melting of the core, stimulated Raman scattering, stimulated Brillouin scattering, optical damage, bend induced limits on core diameter and limits to coupling of pump diode light into the fiber. For conventional fiber lasers based upon silica, the single aperture, diffraction limited power limit was found to be 36.6kW. This is a hard upper limit that results from an interaction of the stimulated Raman scattering with thermal lensing. This result is dependent only upon physical constants of the material and is independent of the core diameter or fiber length. Other materials will have different results both in terms of ultimate power out and which of the many limits is the determining factor in the results. Materials considered include silica doped with Tm and Er, YAG and YAG based ceramics and Yb doped phosphate glass. Pros and cons of the various materials and their current state of development will be assessed. In particular the impact of excess background loss on laser efficiency is discussed.
Date: March 30, 2010
Creator: Dawson, J W; Messerly, M J; Heebner, J E; Pax, P H; Sridharan, A K; Bullington, A L et al.
System: The UNT Digital Library