Degree Discipline

4 Matching Results

Results open in a new window/tab.

Investigation of cryopreservation methods for adherent nerve cell networks in vitro. (open access)

Investigation of cryopreservation methods for adherent nerve cell networks in vitro.

Cryopreservation in suspension is commonplace for a variety of cell types. However, cryopreservation of adherent cells has achieved limited success. This research aimed to cryopreserve adherent nerve cell networks in vitro in a manner that preserved network morphology and physiology. Successful implementation would enable long term storage of adherent neuronal networks on microelectrode arrays and on-demand access for use in pharmacological and toxicological testing. Based upon morphological assessments, excellent post-thaw preservation was obtained and post-thaw cultures survived in a transitional medium for up to 3.5 hours. However, transitions to native culture medium post-thaw presented difficulties, ultimately resulting in necrosis. A discussion of methods to supplement the current research and increase post-thaw viability is included in the thesis.
Date: December 2009
Creator: Webb, Veronica Fine
System: The UNT Digital Library
Hypoxic and hyperoxic incubation affects the ductus arteriosus in the developing chicken embryo (Gallus gallus). (open access)

Hypoxic and hyperoxic incubation affects the ductus arteriosus in the developing chicken embryo (Gallus gallus).

Developing chicken embryos have two ductus arteriosus (DA) that shunt blood away from the lungs and to the chorioallantoic membrane, the embryonic gas exchanger. In mammals, DA closure is stimulated by an increase in blood gas O2 that occurs as the animal begins to breathe with its lungs. The goal of this study was to determine the influence of O2 levels during incubation on the vascular reactivity and morphology of the O2-sensitive DA and to examine the effects of changing O2 levels during late incubation on the morphology of the DA from chicken embryos. In comparison to normoxia, hypoxia (15%) reduced venous O2 levels in day 16 and day 18 embryos and reduced aircell O2 values in day 16, day 18, and internally pipped (IP) embryos, whereas hyperoxia (30%) increased venous O2 levels and aircell O2 level in day 16, day 18, and IP embryos. In comparison to normoxia, hypoxia delayed closure of the DA, whereas hyperoxia accelerated DA closure. In comparison to the left DA from externally pipped (EP) normoxic embryos, the left DA from EP hypoxic embryos exhibited a significantly weaker contractile response to O2. The DA from day 18 hypoxic embryos exhibited a significantly weaker contractile response …
Date: December 2009
Creator: Copeland, Jennifer
System: The UNT Digital Library
Metabolic, cardiac and ventilatory regulation in early larvae of the South African clawed frog, Xenopus laevis. (open access)

Metabolic, cardiac and ventilatory regulation in early larvae of the South African clawed frog, Xenopus laevis.

Early development of O2 chemoreception and hypoxic responses under normoxic (150 mmHg) and chronically hypoxic (110 mmHg) conditions were investigated in Xenopus laevis from hatching to 3 weeks post fertilization. Development, growth, O2 consumption, ventilatory and cardiac performance, and branchial neuroepithelial cells (NEC) density and size were determined. At 3 days post fertilization (dpf), larvae started gill ventilation at a rate of 28 ± 4 beats/min and showed increased frequency to 60 ± 2 beats/min at a PO2 of 30 mmHg. Also at 3 dpf, NECs were identified in the gill filament buds using immunohistochemical methods. Lung ventilation began at 5 dpf and exhibited a 3-fold increase in frequency from normoxia to a PO2 of 30 mmHg. Hypoxic tachycardia developed at 5 dpf, causing an increase of 20 beats/min in heart rate, which led to a 2-fold increase in mass-specific cardiac output at a PO2 of 70 mmHg. At 10 dpf, gill ventilatory sensitivity to hypoxia increased, which was associated with the increase in NEC density, from 15 ± 1 to 29 ± 2 cells/mm of filament at 5 and 10 dpf, respectively. Unlike the elevated rate, cardiac and ventilatory volumes were independent of acute hypoxia. Despite increased cardioventilatory frequency, …
Date: December 2009
Creator: Pan, Tien-Chien
System: The UNT Digital Library
In vitro Cultures of Morus alba for Enhancing Production of Phytoestrogens (open access)

In vitro Cultures of Morus alba for Enhancing Production of Phytoestrogens

Plant estrogens have long been associated with health benefits. The potential of tissue culture techniques for the production of several secondary metabolites has been known for many years. Tissue cultures stimulate the production or induce the biosynthesis of novel compounds not found in the mature plant. Tissue culture of Morus alba, family Moraceae, is known to contain phytoestrogens, was established on plant-hormone supplemented Murashige and Skoog (MS) medium. Petiole and the stem tissue from mature trees were the best explants for initiation and proliferation of calli. The best callus proliferation was obtained on MS medium containing 1-napthalene acetic acid (1mg/ml) and benzylaminopurine (0.5mg/ml) for M. alba. Comparison of phytoestrogens of Moraceae species from in vivo and in vitro tissue isolation were carried out. The estrogenic activities of callus extracts were assayed in an estrogen-responsive yeast system expressing the human estrogen receptor alpha. Male callus extracts had higher estrogenic activity than male and female extracts from in vivo and in vitro tissues. Isolation and characterization of phytoestrogens from above tissues were carried out using solid phase extraction, high perfomance liquid chromatography and mass spectrometry techniques. Biochanin A, an isoflavonoid, was isolated as one of the compounds in male callus extracts. Biochanin …
Date: December 2009
Creator: Bakshi, Vibhu
System: The UNT Digital Library